Skip to main content
Log in

Modeling of flash sintering of ionic ceramics

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

A fundamental understanding of the influence of defects in ionic ceramics at the atomic, microstructural, and macroscopic levels, before, during, and after the flash sintering event is key to the development of ceramic processing operations that lead to fast, low cost, and environmentally safe fabrication of materials. The observed phenomenology of the flash process encompasses multiple time and length scales and has resulted in a wide variety of what sometimes appears to be contradictory explanations. This article summarizes the latest developments on the modeling and simulation of flash sintering, specifically those related to the understanding of the equilibrium and kinetic properties and the corresponding microstructural evolution of ionic ceramics. Challenges and opportunities in the development of theoretical analyses that include unidentified multiphysical effects are discussed, as they pertain to the processing of technologically relevant ceramic materials for advanced structures and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. European Commission, Reference Document on Best Available Techniques in the Ceramic Manufacturing Industry (2007) vol. 19, p. 210

  2. M. Biesuz, V.M. Sglavo, J. Eur. Ceram. Soc. 39, 115 (2019)

    Article  CAS  Google Scholar 

  3. W.-H. Tuan, J.-K. Guo, Multiphased Ceramic Materials: Processing and Potential (Springer, New York, 2004)

    Book  Google Scholar 

  4. M. Cologna, B. Rashkova, R. Raj, J. Am. Ceram. Soc. 93, 3556 (2010)

    Article  CAS  Google Scholar 

  5. J.A. Downs, V.M. Sglavo, R. Raj, J. Am. Ceram. Soc. 96, 1342 (2013)

    Article  CAS  Google Scholar 

  6. K. Terauds, J.-M. Lebrun, H.-H. Lee, T.-Y. Jeon, S.-H. Lee, J.H. Je, R. Raj, J. Eur. Ceram. Soc. 35, 3195 (2015)

    Article  CAS  Google Scholar 

  7. Y. Zhang, J.-I. Jung, J. Luo, Acta Mater. 94, 87 (2015)

    Article  CAS  Google Scholar 

  8. J.M. Lebrun, R. Raj, J. Am. Ceram. Soc. 97, 2427 (2014)

    Article  CAS  Google Scholar 

  9. R.I. Todd, E. Zapata-Solvas, R.S. Bonilla, T. Sneddon, P.R. Wilshaw, J. Eur. Ceram. Soc. 35, 1865 (2015)

    Article  CAS  Google Scholar 

  10. Y. Dong, I.W. Chen, J. Am. Ceram. Soc. 98, 3624 (2015)

    Article  CAS  Google Scholar 

  11. S. Grasso, Y. Sakka, N. Rrendtroff, C. Hu, G. Maizza, H. Borodianska, O. Vasylkiv, J. Ceram. Soc. Jpn. 119, 144 (2011)

    Article  CAS  Google Scholar 

  12. R. Baraki, S. Schwarz, O. Guillon, J. Am. Ceram. Soc. 95, 75 (2012)

    Article  CAS  Google Scholar 

  13. J.G.P. da Silva, H.A. Al-Qureshi, F. Kell, R. Janssen, J. Eur. Ceram. Soc. 36, 1261 (2016)

    Article  Google Scholar 

  14. Y. Du, A.J. Stevenson, D. Vernat, M. Diaz, D. Marinha, J. Eur. Ceram. Soc. 36, 749 (2016)

    Article  CAS  Google Scholar 

  15. S.K. Jha, K. Teraudus, J.-M. Lebrun, R. Raj, J. Ceram. Soc. Jpn. 124, 283 (2016)

    Article  CAS  Google Scholar 

  16. R. Muccillo, E.N.S. Muccillo, J. Eur. Ceram. Soc. 35, 1653 (2015)

    Article  CAS  Google Scholar 

  17. M. Biesuza, P. Luchi, A. Quaranta, A. Martucci, V.M. Sgalvo, J. Eur. Ceram. Soc. 37, 3125 (2017)

    Article  Google Scholar 

  18. K. Naik, S.K. Jha, R. Raj, Scr. Mater. 118, 1 (2016)

    Article  CAS  Google Scholar 

  19. S.K. Jha, H. Charalambous, H. Wang, X.L. Phuah, C. Meade, J. Okasinski, H. Wang, T. Tsakalakos, Ceram. Int. 44, 15362 (2018)

    Article  CAS  Google Scholar 

  20. J. Cho, J. Li, H. Wang, Z. Fan, J. Li, S. Xue, K.S.N. Vikrant, H. Wang, T.B. Holland, A.K. Mukherjee, R.E. García, X. Zhang, Nat. Commun. 9, 2063 (2018)

    Article  Google Scholar 

  21. H. Wang, X.L. Phuah, J. Li, T.B. Holland, K.S.N. Vikrant, L. Qiang, C.S. Hellberg, N. Bernstein, R.E. García, A.K. Mukherjee, X. Zhang, H. Wang, Ceram. Int. 45, 1251 (2019)

    Article  CAS  Google Scholar 

  22. R. Raj, M. Cologna, J.S.C. Francis, J. Am. Ceram. Soc. 94, 1941 (2011)

    Article  CAS  Google Scholar 

  23. K.S. Naik, V.M. Sglavo, R. Raj, J. Eur. Ceram. Soc. 34, 4063 (2014)

    Article  CAS  Google Scholar 

  24. J.-M. Lebrun, T.G. Morrissey, J.S. Francis, K.C. Seymour, W.M. Kriven, R. Raj. J. Am. Ceram. Soc. 98, 1493 (2015)

    Article  CAS  Google Scholar 

  25. J.-M. Lebrun, C.S. Hellberg, S.K. Jha, W.M. Kriven, A. Stevenson, K.C. Seymour, N. Bernstein, S.C. Erwin, R. Raj. J. Am. Ceram. Soc. 100, 4965 (2017)

    Article  CAS  Google Scholar 

  26. M. Schie, S. Menzel, J. Robertson, R. Waser, R.A. DeSouza, Phys. Rev. Mater. 2, 035002 (2018)

    Article  CAS  Google Scholar 

  27. S. Jo, R. Raj. Scr. Mater. 174, 29 (2020)

    Article  CAS  Google Scholar 

  28. K.S.N. Vikrant, H. Wang, A. Jana, H. Wang, R.E. García, NPJ Comput. Mater. 6, 98 (2020)

    Article  CAS  Google Scholar 

  29. K.S.N. Vikrant, W.C. Chueh, R.E. García, Energy Environ. Sci. 11, 1993 (2018)

    Article  CAS  Google Scholar 

  30. K.S.N. Vikrant, R.E. García, NPJ Comput. Mater. 5, 24 (2019)

    Article  Google Scholar 

  31. J. Lund, K.S.N. Vikrant, C.M. Bishop, W. Rheinheimer, R.E. García, Acta Mater. 205, 116525 (2021)

    Article  CAS  Google Scholar 

  32. R. Kobayashi, J.A. Warren, W.C. Carter, Physica D 140, 141 (2000)

    Article  Google Scholar 

  33. M. Tang, W.C. Carter, R.M. Cannon, Phys. Rev. B 73, 024102 (2006)

    Article  Google Scholar 

  34. R.E. García, C.M. Bishop, W.C. Carter, Acta Mater. 52, 11 (2004)

    Article  Google Scholar 

  35. C.M. Bishop, R.E. García, W.C. Carter, Acta Mater. 51, 1517 (2003)

    Article  CAS  Google Scholar 

  36. F. Larché, J.W. Cahn, Acta Metall. 21, 1051 (1973)

    Article  Google Scholar 

  37. S. Suresh, Fatigue of Materials (Cambridge University Press, Cambridge, UK, 1998)

    Book  Google Scholar 

  38. D.L. Chapman, Philos. Mag. J. Sci. 25, 475 (1913)

    Article  Google Scholar 

  39. M. Gouy, J. Phys. Theor. Appl. 9, 457 (1910)

    Article  CAS  Google Scholar 

  40. P. Debye, E. Hückel, Phys. Z. 24, 185 (1923)

    CAS  Google Scholar 

  41. N.F. Mott, Proc. R. Soc. A Math. Phys. Eng. Sci. 171, 27 (1939)

    Google Scholar 

  42. W. Schottky, Z. Phys. 113, 367 (1939)

    Article  CAS  Google Scholar 

  43. D.S. Mebane, R.A. De Souza, Energy Environ. Sci. 8, 2935 (2015)

    Article  CAS  Google Scholar 

  44. J. Maier, Prog. Solid State Chem. 23, 171 (1995)

    Article  CAS  Google Scholar 

  45. S. Kim, J. Maier, J. Electrochem. Soc. 23, J73 (2002)

    Article  Google Scholar 

  46. X. Guo, W. Single, J. Maier, J. Am. Ceram. Soc. 86, 77 (2003)

    Article  CAS  Google Scholar 

  47. M. Aoki, Y.-M. Chiang, I. Kosacki, L.J.R. Lee, H.T.Y. Liu, J. Am. Ceram. Soc. 79, 1169 (1996)

    Article  CAS  Google Scholar 

  48. H. Yoshida, K. Yokoyama, N. Shibata, Y. Ikuhara, T. Sakura, Acta Mater. 52, 2349 (2004)

    Article  CAS  Google Scholar 

  49. N. Shibata, F. Oba, T. Yokoyama, Y. Ikuhara, Philos. Mag. Lett. 84, 2381 (2004)

    Article  CAS  Google Scholar 

  50. J. Luo, Appl. Phys. Lett. 95, 071911 (2009)

    Article  Google Scholar 

  51. J.M. Dixon, L.D. LaGrange, U. Merten, C.F. Miller, J.T. Porter, J. Electrochem. Soc. 110, 276 (1963)

    Article  CAS  Google Scholar 

  52. D.W. Strickler, W.G. Carlson, J. Am. Ceram. Soc. 47, 123 (1964)

    Article  Google Scholar 

  53. R.E.W. Casselton, Phys. Status Solidi A 2, 571 (1970)

    Article  CAS  Google Scholar 

  54. D.M. Saylor, B.S. El-Dasher, B.L. Adams, G.S. Rohrer, Metall. Mater. Trans. A 35, 1981 (2004)

    Article  Google Scholar 

  55. S. Ratnaphan, Y. Yoon, G.S. Rohrer, J. Mater. Sci. 49, 4938 (2014)

    Article  Google Scholar 

  56. S. Dillon, M. Tang, W.C. Carter, M.P. Harmer, Acta Mater. 55, 6208 (2007)

    Article  CAS  Google Scholar 

  57. P.R. Cantwell, M. Tang, S. Dillon, J. Luo, G.S. Rohrer, M.P. Harmer, Acta Mater. 62, 1 (2014)

    Article  CAS  Google Scholar 

  58. J.M. Rickman, J. Luo, Curr. Opin. Solid State Mater. Sci. 20, 225 (2016)

    Article  CAS  Google Scholar 

  59. W. Rheinheimer, M.J. Hoffmann, Curr. Opin. Solid State Mater. Sci. 20, 286 (2016)

    Article  CAS  Google Scholar 

  60. W. Rheinheimer, J.P. Parras, J.-H. Preusker, R.A. De Souza, M.J. Hoffmann, J. Am. Ceram. Soc. 102, 3779 (2019)

    Article  CAS  Google Scholar 

  61. W. Rheinheimer, X.L. Phuah, H. Wang, F. Lemke, M.J. Hoffmann, H. Wang, Acta Mater. 165, 398 (2019)

    Article  CAS  Google Scholar 

  62. J. Narayan, Scr. Mater. 68, 785 (2013)

    Article  CAS  Google Scholar 

  63. J. Narayan, Scr. Mater. 69, 107 (2013)

    Article  CAS  Google Scholar 

  64. R. Chaim, G. Chevallier, A. Weibel, C. Estournés, J. Appl. Phys. 121, 145103 (2017)

    Article  Google Scholar 

  65. R.I. Todd, Proceedings of the IV Advanced Ceramics and Applications Conference (Atlantis Press, Paris, 2017)

  66. Ceram. Soc. 102, 5 (2019)

  67. J.L. Auriault, P. Royer, Int. J. Heat Mass Transf. 36, 2613 (1993)

    Article  CAS  Google Scholar 

  68. K.S.N. Vikrant, W. Rheinheimer, R.E. García, NPJ Comput. Mater. 6, 165 (2020)

    Article  CAS  Google Scholar 

  69. K.S.N. Vikrant, W. Rheinheimer, H. Sternlicht, M. Bäurer, R.E. García, Acta Mater. 200, 727 (2020)

    Article  CAS  Google Scholar 

  70. J.W. Cahn, Acta Metall. 10, 789 (1962)

    Article  CAS  Google Scholar 

  71. M. Hillert, B. Sundman, Acta Metall. 24, 731 (1976)

    Article  CAS  Google Scholar 

  72. D. Fan, S.P. Chen, L.-Q. Chen, J. Mater. Res. 14, 1113 (1999)

    Article  CAS  Google Scholar 

  73. K. Grönhagen, J. Ågren, Acta Mater. 55, 955 (2007)

    Article  Google Scholar 

  74. T.W. Heo, S. Bhattacharyya, L.-Q. Chen, Acta Mater. 59, 7800 (2011)

    Article  CAS  Google Scholar 

  75. Y. Dong, I.W. Chen, J. Am. Ceram. Soc. 101, 1857 (2018)

    Article  CAS  Google Scholar 

  76. R. Raj, J. Eur. Ceram. Soc. 32, 2293 (2012)

    Article  CAS  Google Scholar 

  77. I.J. Hewitt, A.A. Lacey, R.I. Todd, Math. Model. Nat. Phenom. 10, 77 (2015)

    Article  Google Scholar 

  78. K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, O. Van der Biest, Acta Mater. 53, 4379 (2005)

    Article  CAS  Google Scholar 

  79. X. Wang, S.R. Casolco, G. Xu, J.E. Garay, Acta Mater. 55, 3611 (2017)

    Article  Google Scholar 

  80. C. Wang, W. Ping, Q. Bai, H. Cui, R. Hensleigh, R. Wang, A.H. Brozena, Z. Xu, J. Dai, Y. Pei, C. Zheng, G. Pastel, J. Gao, X. Wang, H. Wang, J.-C. Zhao, B. Yang, X. Zheng, J. Luo, Y. Mo, B. Dunn, L. Hu, Science 368, 521 (2020)

    Article  CAS  Google Scholar 

  81. Y. Zhang, J. Nie, J.M. Chan, J. Luo, Acta Mater. 125, 465 (2017)

    Article  CAS  Google Scholar 

  82. W. Ji, B. Parker, S. Falco, J.Y. Zhang, Z.Y. Fu, R.I. Todd, J. Eur. Ceram. Soc. 37, 2547 (2017)

    Article  CAS  Google Scholar 

  83. W. Ji, J.Y. Zhang, W. Wang, Z.Y. Fu, R.I. Todd, J. Eur. Ceram. Soc. 40, 5829 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support provided by the US Office of Naval Research (N00014–17–1-2087 [sintering and modeling] and N00014–20–1-2043 [TEM]). R.E.G. acknowledges the support of the National Science Foundation DMR 1734763. W.R. acknowledges funding from the German Science Foundation (DFG), under priority program “Fields Matter” SPP 1959 (HO 1165/20) and under the Emmy Noether Program (RH 146/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. N. Vikrant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikrant, K.S.N., Phuah, X.L., Lund, J. et al. Modeling of flash sintering of ionic ceramics. MRS Bulletin 46, 67–75 (2021). https://doi.org/10.1557/s43577-020-00012-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-020-00012-0

Keywords

Navigation