Skip to main content

Advertisement

Log in

Facile formation with HA/Sr–GO-based composite coatings via green hydrothermal treatment on β-type TiNbTaZr alloys: Morphological and electrochemical insights

  • Invited Feature Paper
  • Focus Issue: Advances in Titanium Bio-Implants
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This work looked into the formation of a hybrid composite coating composed of strontium-doped hydroxyapatite (HA) and graphene oxide (GO) on the surface of β-type TiNbTaZr (TNTZ) alloy via a green hydrothermal method. To achieve this goal, various GO concentrations, 1.5, 3.0, and 4.5 wt%, were added to autoclave linked solution. The inclusion of GO led to a reduction in the crystallinity of HA/Sr coating where dense homogenous rods nanocrystalline structures were observed in the case of 4.5 wt% of GO. Furthermore, per electrochemical measurements in a simulated body fluid (SBF) solution, it was found that the composite coating was made from a solution with 4.5 wt% GO which had the lowest corrosion density of 83 nA cm−2 with the highest polarization resistance (237,415 Ω cm2). The results showed that the hydrophilic HA/Sr–GO composite coatings prepared in the present work can be used as a potential candidate in orthopedic applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. N. Mavros, T. Larimian, J. Esqivel, R.K. Gupta, R. Contieri, T. Borkar, Spark plasma sintering of low modulus titanium-niobium-tantalum-zirconium (TNTZ) alloy for biomedical applications. Mater. Des. 183, 108163 (2019)

    Article  CAS  Google Scholar 

  2. B. Dikici, Z. Esen, O. Duygulu, S.G. Koc, in Adv. Met. Biomater. Tissues, Mater. Biol. React. ed. by M. Niinomi, T. Narushima, M. Nakai (Springer, Berlin, 2015), pp. 275–303

    Google Scholar 

  3. J. Adhikari, P. Saha, A. Sinha: in Fundam. Biomater. Met. (Elsevier, 2018), pp. 299–321.

  4. K.S. Katti, D. Verma, D. R. Katti: in Jt. Replace. Technol. (Elsevier Ltd, 2008), pp. 81–104.

  5. M. Niinomi, Metallic biomaterials. J. Artif. Organs 11(3), 105 (2008)

    Article  CAS  Google Scholar 

  6. Y. Abd-elrhman, M.A.-H. Gepreel, A. Abdel-Moniem, S. Kobayashi, Compatibility assessment of new V-free low-cost Ti–47Mo–45Fe alloy for some biomedical applications. Mater. Des. 97, 445 (2016)

    Article  CAS  Google Scholar 

  7. M. Niinomi, M. Nakai, Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int. J. Biomater. (2011)

  8. J. Davis: Handbook of Materials for Medical Devices. ASM Int. (2003).

  9. D. Kuroda, M. Niinomi, M. Morinaga, Y. Kato, T. Yashiro, Design and mechanical properties of new β type titanium alloys for implant materials. Mater. Sci. Eng. A 243, 244 (1998)

    Article  Google Scholar 

  10. L.M. Zou, C. Yang, Y. Long, Z.Y. Xiao, Y.Y. Li, Fabrication of biomedical Ti-35Nb-7Zr-5Ta alloys by mechanical alloying and spark plasma sintering. Powder Metall. 55(1), 65 (2012)

    Article  CAS  Google Scholar 

  11. W. Murphy, J. Black, G. Hastings (eds.), Handbook of Biomaterial Properties (Springer, New York, 2016)

    Google Scholar 

  12. E.W. Collings: in (Springer, New York, 2013)

  13. M. Niinomi, Recent metallic materials for biomedical applications. Metall. Mater. Trans. A 33, 477 (2002)

    Article  Google Scholar 

  14. Gunawarman, N.F. Nuswantoro, D. Juliadmi, H. Fajri, A. Budiman, D.H. Tjong, M. Manjas, Hydroxyapatite coatings on titanium alloy TNTZ using electrophoretic deposition. IOP Conf. Ser. Mater. Sci. Eng. 602(1), 012071 (2019)

    Article  CAS  Google Scholar 

  15. A. Rajabnejadkeleshteri, A. Kamyar, M. Khakbiz, Z.L. Bakalani, H. Basiri, Synthesis and characterization of strontium fluor-hydroxyapatite nanoparticles for dental applications. Microchem. J. 153(2019), 104485 (2020)

    Article  CAS  Google Scholar 

  16. M. Kamaei, M.H. Fathi, Preparation and characterization of strontium-fluorapatite nanopowders by sol-gel method. AIP Conf. Proc. 1920(March) (2018)

  17. L. Gineste, M. Gineste, X. Ranz, A. Ellefterion, A. Guilhem, N. Rouquet, P. Frayssinet, Degradation of hydroxylapatite, fluorapatite, and fluorhydroxyapatite coatings of dental implants in dogs. J. Biomed. Mater. Res. 48(3), 224 (1999)

    Article  CAS  Google Scholar 

  18. M. Vallet-Regí, J.M. González-Calbet, Calcium phosphates as substitution of bone tissues. Prog. Solid State Chem. 32(1–2), 1 (2004)

    Article  Google Scholar 

  19. M. Sadat-Shojai, M.T. Khorasani, E. Dinpanah-Khoshdargi, A. Jamshidi, Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 9(8), 7591 (2013)

    Article  CAS  Google Scholar 

  20. A. Bigi, E. Boanini, C. Capuccini, M. Gazzano, Strontium-substituted hydroxyapatite nanocrystals. Inorganica Chim. Acta 360(3), 1009 (2007)

    Article  CAS  Google Scholar 

  21. M. Yasaei, M. Khakbiz, E. Ghasemi, A. Zamanian, Synthesis and characterization of ZnAl-NO3 (-CO3) layered double hydroxide: a novel structure for intercalation and release of simvastatin. Appl. Surf. Sci. 467–468(October 2018), 782 (2019)

    Article  Google Scholar 

  22. A. Kamyar, M. Khakbiz, A. Zamanian, M. Yasaei, B. Yarmand, Synthesis of a novel dexamethasone intercalated layered double hydroxide nanohybrids and their deposition on anodized titanium nanotubes for drug delivery purposes. J. Solid State Chem. 271(October 2018), 144 (2019)

    Article  CAS  Google Scholar 

  23. O. Yigit, B. Dikici, T.C. Senocak, N. Ozdemir, One-step synthesis of nano-hydroxyapatite/graphene nanosheet hybrid coatings on Ti6Al4V alloys by hydrothermal method and their in-vitro corrosion responses. Surf. Coat. Technol. 394(2), 125858 (2020)

    Article  CAS  Google Scholar 

  24. Z. Jiang, B. Feng, J. Xu, T. Qing, P. Zhang, Z. Qing, Graphene biosensors for bacterial and viral pathogens. Biosens. Bioelectron. 166(July), 112471 (2020)

    Article  CAS  Google Scholar 

  25. Y. Gao, X. Zou, J.X. Zhao, Y. Li, X. Su, Graphene oxide-based magnetic fluorescent hybrids for drug delivery and cellular imaging. Colloids Surf. B 112, 128 (2013)

    Article  CAS  Google Scholar 

  26. X. Xiong, W. Dang, R. Luo, Y. Long, C. Tong, L. Yuan, B. Liu, A graphene-based fluorescent nanoprobe for simultaneous imaging of dual miRNAs in living cells. Talanta 225(December 2020), 121947 (2021)

    Article  CAS  Google Scholar 

  27. W. Chen, S. Li, R. Wang, X. Wu, Graphene-like BC3 and NC3 flakes as promising drug delivery systems. Physica E 129(4), 114633 (2021)

    Article  CAS  Google Scholar 

  28. A. Ghamkhari, S. Abbaspour-Ravasjani, M. Talebi, H. Hamishehkar, M.R. Hamblin, Development of a graphene oxide-poly lactide nanocomposite as a Smart Drug Delivery System. Int. J. Biol. Macromol. 169, 521 (2021)

    Article  CAS  Google Scholar 

  29. L. Fathyunes, J. Khalil-Allafi, Characterization and corrosion behavior of graphene oxide-hydroxyapatite composite coating applied by ultrasound-assisted pulse electrodeposition. Ceram. Int. (2017).

  30. Y. Wu, Y. Wang, S. Tian, Y. Jing, J. Zhuang, L. Guo, D. Jia, and Y. Zhou: Hydrothermal fabrication of rGO/Apatite layers on AZ31 magnesium alloy for enhanced bonding strength and corrosion resistance. Appl. Surf. Sci. (2019).

  31. N. Edwin, S. Saranya, P. Wilson, Strontium incorporated hydroxyapatite/hydrothermally reduced graphene oxide nanocomposite as a cytocompatible material. Ceram. Int. 45(5), 5475 (2019)

    Article  CAS  Google Scholar 

  32. Y. Liu, J. Huang, M. Niinomi, H. Li, Inhibited grain growth in hydroxyapatite–graphene nanocomposites during high temperature treatment and their enhanced mechanical properties. Ceram. Int. 42(9), 11248 (2016)

    Article  CAS  Google Scholar 

  33. G.M. Neelgund, A. Oki, Z. Luo, In situ deposition of hydroxyapatite on graphene nanosheets. Mater. Res. Bull. 48(2), 175 (2013)

    Article  CAS  Google Scholar 

  34. S. Mallakpour, E. Khadem, Construction of crosslinked chitosan/nitrogen-doped graphene quantum dot nanocomposite for hydroxyapatite biomimetic mineralization. Int. J. Biol. Macromol. 120, 1451 (2018)

    Article  CAS  Google Scholar 

  35. S. Klébert, C. Balázsi, K. Balázsi, E. Bódis, P. Fazekas, A. M. Keszler, J. Szépvölgyi, Z. Károly, Spark plasma sintering of graphene reinforced hydroxyapatite composites. Ceram. Int. (2015).

  36. V. Kosma, T. Tsoufis, T. Koliou, A. Kazantzis, K. Beltsios, J.T.M. De Hosson, D. Gournis: Fibrous hydroxyapatite-carbon nanotube composites by chemical vapor deposition: In situ fabrication, structural and morphological characterization. Mater. Sci. Eng. B (2013).

  37. Y. Liu, J. Huang, H. Li, Synthesis of hydroxyapatite-reduced graphite oxide nanocomposites for biomedical applications: oriented nucleation and epitaxial growth of hydroxyapatite. J. Mater. Chem. B (2020).

  38. L. Zhang, W. Liu, C. Yue, T. Zhang, P. Li, Z. Xing, Y. Chen, A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility. Carbon N. Y. 61, 105 (2013)

    Article  CAS  Google Scholar 

  39. H. Bin Ma, W.X. Su, Z.X. Tai, D.F. Sun, X. Bin Yan, B. Liu, Q.J. Xue, Preparation and cytocompatibility of polylactic acid/hydroxyapatite/graphene oxide nanocomposite fibrous membrane. Chin. Sci. Bull. 57(23), 3051 (2012)

    Article  Google Scholar 

  40. S. Peng, G. Zhou, K.D.K. Luk, K.M.C. Cheung, Z. Li, W.M. Lam, Z. Zhou, W.W. Lu, Strontium promotes osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Cell. Physiol. Biochem. 23(1–3), 165 (2009)

    Article  CAS  Google Scholar 

  41. W. Zhang, Y. Shen, H. Pan, K. Lin, X. Liu, B.W. Darvell, W.W. Lu, J. Chang, L. Deng, D. Wang, W. Huang, Effects of strontium in modified biomaterials. Acta Biomater. 7(2), 800 (2011)

    Article  CAS  Google Scholar 

  42. E. Landi, A. Tampieri, G. Celotti, S. Sprio, M. Sandri, G. Logroscino, Sr-substituted hydroxyapatites for osteoporotic bone replacement. Acta Biomater. 3(6), 961 (2007)

    Article  CAS  Google Scholar 

  43. C. Drouet, M.T. Carayon, C. Combes, C. Rey, Surface enrichment of biomimetic apatites with biologically-active ions Mg2+ and Sr2+: a preamble to the activation of bone repair materials. Mater. Sci. Eng. C 28(8), 1544 (2008)

    Article  CAS  Google Scholar 

  44. N.F. Nuswantoro, M. Manjas, N. Suharti, D. Juliadmi, H. Fajri, D.H. Tjong, J. Affi, M. Niinomi, and Gunawarman: Hydroxyapatite coating on titanium alloy TNTZ for increasing osseointegration and reducing inflammatory response in vivo on Rattus norvegicus Wistar rats. Ceram. Int. 47, 16094 (2021)

    Article  CAS  Google Scholar 

  45. F. Songur, B. Dikici, M. Niinomi, E. Arslan, The plasma electrolytic oxidation (PEO) coatings to enhance in-vitro corrosion resistance of Ti–29Nb–13Ta–4.6Zr alloys: The combined effect of duty cycle and the deposition frequency. Surf. Coat. Technol. 374(xxxx), 345 (2019)

    Article  CAS  Google Scholar 

  46. Y. Qi, S. Mai, Z. Ye, C. Aparicio, Biomimetic fabrication and characterization of collagen/strontium hydroxyapatite nanocomposite. Mater. Lett. 274, 127982 (2020)

    Article  CAS  Google Scholar 

  47. L. Stipniece, S. Wilson, J.M. Curran, R. Chen, K. Salma-Ancane, P.K. Sharma, B.J. Meenan, A.R. Boyd, Strontium substituted hydroxyapatite promotes direct primary human osteoblast maturation. Ceram. Int. 47(3), 3368 (2021)

    Article  CAS  Google Scholar 

  48. X. Zhang, G. Song, H. Qiao, J. Lan, B. Wang, H. Yang, L. Ma, S. Wang, Z. Wang, H. Lin, S. Han, S. Kang, X. Chang, Y. Huang, Novel ternary vancomycin/strontium doped hydroxyapatite/graphene oxide bioactive composite coatings electrodeposited on titanium substrate for orthopedic applications. Colloids Surf. A 603(June), 125223 (2020)

    Article  CAS  Google Scholar 

  49. Z. Geng, X. Li, L. Ji, Z. Li, S. Zhu, Z. Cui, J. Wang, J. Cui, X. Yang, C. Liu, A novel snail-inspired bionic design of titanium with strontium-substituted hydroxyapatite coating for promoting osseointegration. J. Mater. Sci. Technol. 79, 35 (2021)

    Article  CAS  Google Scholar 

  50. Z. Geng, R. Wang, X. Zhuo, Z. Li, Y. Huang, L. Ma, Z. Cui, S. Zhu, Y. Liang, Y. Liu, H. Bao, X. Li, Q. Huo, Z. Liu, X. Yang, Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties. Mater. Sci. Eng. C 71, 852 (2017)

    Article  CAS  Google Scholar 

  51. B. Dikici, M. Niinomi, M. Topuz, S.G. Koc, M. Nakai, Synthesis of biphasic calcium phosphate (BCP) coatings on β-type titanium alloys reinforced with rutile-TiO2 compounds: adhesion resistance and in-vitro corrosion. J. Sol-Gel Sci. Technol. 87(3), 713 (2018)

    Article  CAS  Google Scholar 

  52. M. Zarka, B. Dikici, M. Niinomi, K.V. Ezirmik, M. Nakai, H. Yilmazer, A systematic study of β-type Ti-based PVD coatings on magnesium for biomedical application. Vacuum 183(September 2020), 109850 (2021)

    Article  CAS  Google Scholar 

  53. J. Ren, D. Zhao, F. Qi, W. Liu, Y. Chen, Heat and hydrothermal treatments on the microstructure evolution and mechanical properties of plasma sprayed hydroxyapatite coatings reinforced with graphene nanoplatelets. J. Mech. Behav. Biomed. Mater. 101, 103418 (2020)

    Article  CAS  Google Scholar 

  54. H. Nosrati, R.S. Mamoory, F. Dabir, D.Q. Svend Le, C.E. Bünger, M.C. Perez, M.A. Rodriguez, Effects of hydrothermal pressure on in situ synthesis of 3D graphene- hydroxyapatite nano structured powders. Ceram. Int. 45(2), 1761 (2019)

    Article  CAS  Google Scholar 

  55. M. Li, Y. Wang, Q. Liu, Q. Li, Y. Cheng, Y. Zheng, T. Xi, S. Wei, In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. J. Mater. Chem. B 1(4), 475 (2013)

    Article  CAS  Google Scholar 

  56. M. Li, Q. Liu, Z. Jia, X. Xu, Y. Cheng, Y. Zheng, T. Xi, S. Wei, Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon N. Y. 67, 185 (2014)

    Article  CAS  Google Scholar 

  57. H. Liu, P. Xi, G. Xie, Y. Shi, F. Hou, L. Huang, F. Chen, Z. Zeng, C. Shao, J. Wang, Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization. J. Phys. Chem. C 116(5), 3334 (2012)

    Article  CAS  Google Scholar 

  58. Z. Fan, J. Wang, Z. Wang, H. Ran, Y. Li, L. Niu, P. Gong, B. Liu, S. Yang, One-pot synthesis of graphene/hydroxyapatite nanorod composite for tissue engineering. Carbon N. Y. 66, 407 (2014)

    Article  CAS  Google Scholar 

  59. O. Yigit, B. Dikici, N. Ozdemir, E. Arslan, Plasma electrolytic oxidation of Ti-6Al-4V alloys in nHA/GNS containing electrolytes for biomedical applications: The combined effect of the deposition frequency and GNS weight percentage. Surf. Coat. Technol. 415(January), 127139 (2021)

    Article  CAS  Google Scholar 

  60. H. Nosrati, R.S. Mamoory, F. Dabir, M.C. Perez, M.A. Rodriguez, D.Q. Svend Le, C.E. Bünger, In situ synthesis of three dimensional graphene-hydroxyapatite nano powders via hydrothermal process. Mater. Chem. Phys. 222, 251 (2019)

    Article  CAS  Google Scholar 

  61. S.M. Prabhu, S.S. Elanchezhiyan, G. Lee, A. Khan, S. Meenakshi, Assembly of nano-sized hydroxyapatite onto graphene oxide sheets via in-situ fabrication method and its prospective application for defluoridation studies. Chem. Eng. J. 300, 334 (2016)

    Article  CAS  Google Scholar 

  62. B. CicekOzkan, T. Soganci, H. Turhan, M. Ak, Investigation of rGO and chitosan effects on optical and electrical properties of the conductive polymers for advanced applications. Electrochim. Acta 295, 1044 (2018)

    Google Scholar 

  63. Y. Zeng, X. Pei, S. Yang, H. Qin, H. Cai, S. Hu, L. Sui, Q. Wan, J. Wang, Graphene oxide/hydroxyapatite composite coatings fabricated by electrochemical deposition. Surf. Coat. Technol. 286, 72 (2016)

    Article  CAS  Google Scholar 

  64. L. Fathyunes, J. Khalil-Allafi, M. Moosavifar, Development of graphene oxide/calcium phosphate coating by pulse electrodeposition on anodized titanium: biocorrosion and mechanical behavior. J. Mech. Behav. Biomed. Mater. 90, 575 (2019)

    Article  CAS  Google Scholar 

  65. D. Gopi, D. Rajeswari, S. Ramya, M. Sekar, P.R.J. Dwivedi, L. Kavitha, R. Ramaseshan, Enhanced corrosion resistance of strontium hydroxyapatite coating on electron beam treated surgical grade stainless steel. Appl. Surf. Sci. 286, 83 (2013)

    Article  CAS  Google Scholar 

  66. L. Fathyunes, J. Khalil-Allafi, The effect of graphene oxide on surface features, biological performance and bio-stability of calcium phosphate coating applied by pulse electrochemical deposition. Appl. Surf. Sci. 437, 122 (2018)

    Article  CAS  Google Scholar 

  67. R. Askarnia, S.R. Fardi, M. Sobhani, H. Staji, Ternary hydroxyapatite/chitosan/graphene oxide composite coating on AZ91D magnesium alloy by electrophoretic deposition. Ceram. Int. 47, 27071 (2021)

    Article  CAS  Google Scholar 

  68. O. Yigit, N. Ozdemir, B. Dikici, M. Kaseem, Surface properties of graphene functionalized TiO2/nHA hybrid coatings made on Ti6Al7Nb alloys via plasma electrolytic oxidation (PEO). Molecules 26(13), 3903 (2021)

    Article  CAS  Google Scholar 

  69. M. Kaseem, H.C. Choe, Simultaneous improvement of corrosion resistance and bioactivity of a titanium alloy via wet and dry plasma treatments. J. Alloys Compd. 851, 156840 (2021)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burak Dikici.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yigit, O., Dikici, B., Kaseem, M. et al. Facile formation with HA/Sr–GO-based composite coatings via green hydrothermal treatment on β-type TiNbTaZr alloys: Morphological and electrochemical insights. Journal of Materials Research 37, 2512–2524 (2022). https://doi.org/10.1557/s43578-021-00470-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00470-5

Keywords

Navigation