Skip to main content
Log in

Superspin ensembles of oxidized-\({\hbox {Co}}_x{\hbox {Fe}}_{1-x}{\hbox {S}}_2\) with embedded magnetic nanoparticles

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report on the magnetic behavior of oxidized-Co\(_x\)Fe\(_{1-x}\)S\(_2\) nanocrystals as they assemble to form nanoparticles. The morphologies show a typical NP size of around 250–100 nm and NC sizes of around 7 nm. Using extended absorption fine structure, we confirm the existence of Co-oxides for x \(\ge\) 0.5. The temperature dependence of DC magnetization and AC susceptibility reveals a number of magnetic phases in these NP oxides. Co-existence of blocking and freezing behaviors via intercluster dipolar interactions is found consistent with the antiferromagnetic exchange interactions within clusters embedded within a “supermagnetic” ensemble. The Fe substitution influences the supermagnetism of the ensemble, while the AF behavior of the embedded clusters remains largely unaffected. The overall behavior can be described by a phase diagram which can be understood in terms of competition between the various dipolar, inter-, and intracluster interactions within the random magnetic anisotropy model.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. Walid Baaziz, Benoît P. Pichon, Christophe Lefevre, Corinne Ulhaq-Bouillet, Jean-Marc. Greneche, Mohamed Toumi, Tahar Mhiri, Sylvie Bégin-Colin, High exchange bias in Fe3−δO4@CoO core shell nanoparticles synthesized by a one-pot seed-mediated growth method. J. Phys. Chem. C 117(21), 11436–11443 (2013)

    Article  CAS  Google Scholar 

  2. S. Guo, S. Zhang, L. Wu, S. Sun, Co/CoO nanoparticles assembled on graphene for electrochemical reduction of oxygen. Angew. Chem. Int. Ed. 51, 11770 (2012)

    Article  CAS  Google Scholar 

  3. Y. Kobayashi, M. Horie, M. Konno, B. Rodríguez-Gonlález, L.M. Liz-Marzán, Preparation and properties of silica-coated cobalt nanoparticles. J. Phys. Chem. B 107, 7420 (2003)

    Article  CAS  Google Scholar 

  4. R.C. Temple, A.P. Mihai, D.A. Arena, C.H. Marrows, Ensemble magnetic behavior of interacting CoFe nanoparticles. Front. Phys. 3, 52 (2015)

    Article  Google Scholar 

  5. S. Bedanta, E. Kentzinger, O. Petracic, W. Kleemann, U. Rücker, Th. Brückel, A. Paul, S. Cardoso, P.P. Freitas, Modulated magnetization depth profile in dipolarly coupled magnetic multilayers. Phys. Rev. B 74, 054426 (2006)

    Article  Google Scholar 

  6. G. Herzer, Nanocrystalline soft magnetic alloys, in Handbook of magnetic materials, vol. 10, ed. by K.H.J. Buschow (Elsevier Science, Amsterdam, 1997), pp.415–462

    Google Scholar 

  7. A. Zeleňáková, V. Zeleňák, Š Michalík, J. Kovák, M.W. Meisel, Structural and magnetic properties of CoO–Pt core-shell nanoparticles. Phys. Rev. B 89, 104417 (2014)

    Article  Google Scholar 

  8. R. Morales, Z.-P. Li, J. Olamit, K. Liu, J.M. Almeda, I.K. Schuller, Role of the antiferromagnetic bulk spin structure on exchange bias. Phys. Rev. Lett. 102, 097201 (2009)

    Article  CAS  Google Scholar 

  9. A. Ennaoui, H. Tributsch, Iron sulphide solar cells. Sol. Energy Mater. Sol. Cells 13, 197–200 (1984)

    CAS  Google Scholar 

  10. J. Puthussery, S. Seefeld, N. Berry, M. Gibbs, M. Law, Colloidal iron pyrite (FeS\(_2\)) nanocrystal inks for thin-film photovoltaics. J. Am. Chem. Soc. 133, 716 (2011)

    Article  CAS  Google Scholar 

  11. P. Dutta, M.S. Seehra, S. Thota, J. Kumaet, A comparative study of the magnetic properties of bulk and nanocrystalline CoO. J. Phys.: Condens. Matter 20, 015218 (2008)

    Google Scholar 

  12. S. Gangopadhayay, G.C. Hadjipanayis, C.M. Sorensen, K.J. Klabunde, Exchange anisotropy in oxide passivated Co fine particles. J. Appl. Phys. 73, 6964 (1993)

    Article  Google Scholar 

  13. D.A. Resnick et al., Magnetic properties of Co3O4 nanoparticles mineralized in Listeria innocua Dps. J. Appl. Phys. 99, 08501 (2006)

    Article  Google Scholar 

  14. C. Leighton, M. Manno, A. Cady, J.W. Freeland, L. Wang, K. Umemoto, R.M. Wentzcovitch, T.Y. Chen, C.L. Chien, P.L. Kuhns, M.J.R. Hoch, A.P. Reyes, W.G. Moulton, E.D. Dahlberg, J. Checkelsky, J. Eckert, Composition controlled spin polarization in CoxFe1-xS2 alloys. J. Phys. Condens. Matter 19, 315219 (2007)

    Article  CAS  Google Scholar 

  15. V.P. Zhdanov, B. Kasemo, Cabrera-Mott kinetics of oxidation of nm-sized metal particles. Chem. Phys. Lett. 452, 285 (2008)

    Article  CAS  Google Scholar 

  16. H. Gabold, Z. Luan, N. Paul, M. Opel, P. Müller-Buschbaum, M. Law, A. Paul, Structural and magnetic properties of cobalt iron disulfide (CoxFe1-xS2) nanocrystals. Sci. Rep. 8, 4835 (2018). https://doi.org/10.1038/s41598-018-22996-1

    Article  CAS  Google Scholar 

  17. S. Mondini, A.M. Ferretti, A. Puglisi, A. Ponti, PEBBLES and PEBBLEJUGGLER: software for accurate, unbiased, and fast measurement and analysis of nanoparticle morphology from transmission electron microscopy (TEM) micrographs. Nanoscale 4, 5356–5372 (2012). https://doi.org/10.1039/C2NR31276J

    Article  CAS  Google Scholar 

  18. T. Kinner, K.P. Bhandari, E. Bastola, B.M. Monahan, N.O. Haugen, P.J. Roland, T.P. Bigioni, R.J. Ellingson, Majority carrier type control of cobalt iron sulfide (CoxFe1-xS2) pyrite nanocrystals. J. Phys. Chem. C 120, 5706 (2016)

    Article  CAS  Google Scholar 

  19. Q. Wang, J.C. Hanson, A.I. Frenkel, Solving the structure of reaction intermediates by time-resolved synchrotron x-ray absorption spectroscopy. J. Chem. Phys. 129, 234502 (2008)

    Article  Google Scholar 

  20. A. Pineiro, A.S. Botana, V. Pardo, D. Baldomir, Fermiology and magnetism in weak itinerant ferromagnet CoS2: an ab initio study. J. Phys.: Condens. Matter 22, 505602 (2010)

    CAS  Google Scholar 

  21. M. Knobel, W.C. Nunes, L.M. Socolovsky, E. De Biasi, J.M. Vargas, J.C. Denardin, Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. J. Nanosci. Nanotechnol. 8, 2836 (2008)

    Article  CAS  Google Scholar 

  22. Amitesh Paul et al., Superparamagnetic regular nanopillar-like structures studied by grazing-incidence X-ray scattering: effect of vertical correlation. J. Appl. Cryst. 47, 1065–1076 (2014)

    Article  CAS  Google Scholar 

  23. S. Mukherjee et al., Exchange-bias-like coupling in a Cu-diluted-Fe/Tb multilayer. Phys. Rev. B 91, 104419 (2015)

    Article  Google Scholar 

  24. J.A. Mydosh, Spin glasses: an experimental introduction (Taylor & Francis, London, 1993)

    Google Scholar 

  25. C. Djurberg, P. Svedlindh, P. Nordblad, M.F. Hansen, F. Bdker, S. Mrup, Dynamics of an interacting particle system evidence of critical slowing down. Phys. Rev. Lett. 79, 5154 (1997)

    Article  CAS  Google Scholar 

  26. L. Néel, Théorie du traînage magnétique des ferromagnétiques en grains fins avec application aux terres cuites. Ann. Geophys. (CNRS) 5, 99 (1949)

    Google Scholar 

  27. H. Vogel, The law of the relation between the viscosity of liquids and the temperature. Phys. Z. 22, 645 (1921)

    CAS  Google Scholar 

  28. B.I. Halperin, P.C. Hohenberg, Scaling laws for dynamic critical phenomena. Phys. Rev. 177, 952 (1969)

    Article  CAS  Google Scholar 

  29. J.L. Dormann, L. Bessais, D. Fiorani, A dynamic study of small interacting particles: superparamagnetic model and spin-glass laws. J. Phys. C: Solid St. Phys. 21, 2015 (1988)

    Article  Google Scholar 

  30. G.S. Fulcher, Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339 (1925)

    Article  CAS  Google Scholar 

  31. L. N´eel, Influence des fluctuations thermiques sur laimantation de grains ferromagnetiques tres fins. Acad. Sci. 228, 664 (1949)

    Google Scholar 

  32. L. León Félix et al., Structural and magnetic properties of core-shell Au/Fe3O4 nanoparticles. Sci. Rep. 7, 41732 (2017). https://doi.org/10.1038/srep41732

    Article  CAS  Google Scholar 

  33. K. Hiroi, K. Komatsu, T. Sato, Superspin glass originating from dipolar interaction with controlled interparticle distance among -FeO nanoparticles with silica shells. Phys. Rev. B 83, 224423 (2011)

    Article  Google Scholar 

  34. A. Zelenáková, V. Zelenák, S. Michalík, J. Kovác, M.W. Meisel, Structural and magnetic properties of CoO–Pt core-shell nanoparticles. Phys. Rev. B 89, 104417 (2014)

    Article  Google Scholar 

  35. R. J. Meier, C. J. Schinkel, A. de Visser. Magnetisation of condensed oxygen under high pressures and in strong magnetic fields. J. Phys. C: Solid State Phys., 15, 1015–1024, (1982); 1997, Oxygen Contamination (MPMS Application Note 1014-210B). Retrieved from Quantum Design website: https://www.qdusa.com/sitedocs/appNotes/mpms/1014-210.pdf

  36. Z. Mao, X. Chen, Magnetic phase diagram of interacting nanoparticle systems under the mean-field model. J. Phys. Condens. Matter 23, 226005 (2011)

    Article  Google Scholar 

  37. P. Kidkhunthod, Structural studies of advanced functional materials by synchrotron-based x-ray absorption spectroscopy: BL5.2 at SLRI. Thailand. Adv. Nat. Sci.: Nanosci. Nanotechnol. 8, 035007 (2017)

    Google Scholar 

  38. W. Klysubun, P. Kidkhunthod, P. Tarawarakarn, P. Sombunchoo, C. Kongmark, S. Limpijumnong, S. Rujirawat, R. Yimnirun, G. Tumcharern, K. Faungnawakij, SUT-NANOTEC-SLRI beamline for X-ray absorption spectroscopy. J. Synchrotron. Rad. 24, 707 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially funded by Bavaria California Technology Center (BaCaTeC), project No.:4 [2014-2] during 2015-2016. A. Paul acknowledges the BaCaTec funding.

Author information

Authors and Affiliations

Authors

Contributions

HG prepared the samples. HG and MO did the magnetization measurements. CE, PK, and RY did the XANES measurements and along with AP wrote the related portion. AP conceived and designed the work, analyzed the data, coordinated the work, and wrote the manuscript.

Corresponding author

Correspondence to Amitesh Paul.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabold, H., Ekwongsa, C., Kidkhunthod, P. et al. Superspin ensembles of oxidized-\({\hbox {Co}}_x{\hbox {Fe}}_{1-x}{\hbox {S}}_2\) with embedded magnetic nanoparticles. Journal of Materials Research 38, 867–882 (2023). https://doi.org/10.1557/s43578-022-00871-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00871-0

Navigation