Skip to main content

Advertisement

Log in

Recent development in nano-phase change materials and their applications in enhancing thermal capacity of intelligent buildings: A state-of-the art review

  • Invited Feature Paper-Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Rapid urbanization and industrialization has led to a tremendous increase in energy demand. The functioning of buildings consumes an enormous amount of energy, which can be economized by using phase change materials (PCMS). This paper mainly aims to present a detailed review of the application of nano-PCMS for temperature regulation of intelligent buildings. The first part of this paper deals with the broad classification of PCMS into organic, inorganic, and eutectic mixtures with a detailed review of their melting points and latent heat of fusion. The second part explores different mechanisms for PCMS, like mechanical deformation, optical modulation, etc. A summary of research works pertaining to various mechanisms, citing their benefits and drawbacks, as well as their applicability and suitability, has been presented. The last section of this paper presents an exhaustive review of PCMS in different applications along with challenges faced and future research directions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Copyright 2017 American Association for the Advancement of Science, 2018 American Association for the Advancement of Science, and 2019 American Association for the Advancement of Science [76].

Figure 6

Copyright 2020 American Chemical Society, 2012 American Chemical Society, 2016 AIP Publishing, and 2017 American Chemical Society. as reported in Guo et al. [63].

Figure 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S.A. Memon, Phase change materials integrated in building walls: a state of the art review. Renew. Susta. Energy Rev 31, 870–906 (2014)

    Article  Google Scholar 

  2. M. Diamanti, M. Ormellese, M. Pedeferri, Characterization of photocatalytic and superhydrophilic properties of mortars containing titanium dioxide. Cem. Concr. Res 38, 1349–1353 (2008)

    Article  CAS  Google Scholar 

  3. S.M. Hasnain, Review on sustainable thermal energy storage technologies, part I: heat storage materials and techniques. Energy Convers. Manag 39, 1127–1138 (1998)

    Article  CAS  Google Scholar 

  4. C. Liu, Y. Chen, C. Dames, Electric-field-controlled thermal switch in ferroelectric materials using first-principles calculations and domain-wall engineering. Phys. Rev. Appl. 11(4), 044002 (2019)

    Article  CAS  Google Scholar 

  5. C. Liu, P. Lu, Z. Gu, Z.J. Yang, Y. Chen, Bidirectional tuning of thermal conductivity in ferroelectric materials using E-controlled hysteresis characteristic property. J. Phys. Chem. C 124(48), 26144–26152 (2020)

    Article  CAS  Google Scholar 

  6. C. Liu, V. Mishra, Y. Chen, C. Dames, Large thermal conductivity switch ratio in barium titanate under electric field through first-principles calculation. Adv. Theory Simul. 1(12), 1800098 (2018)

    Article  Google Scholar 

  7. F. Agyenim, N. Hewitt, P. Eames, M. Smyth, A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renew. Sustain. Energy Rev. 14(2), 615–628 (2010)

    Article  CAS  Google Scholar 

  8. G. Peng, G. Dou, Y. Hu, Y. Sun, Z. Chen, Phase change material (PCM) microcapsules for thermal energy storage. Adv. Polym. Technol. (2020). https://doi.org/10.1155/2020/9490873

    Article  Google Scholar 

  9. F. Agyenim, P. Eames, M.A. Smyth, A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins. Sol. Energy 83, 1509–1520 (2009)

    Article  CAS  Google Scholar 

  10. B. Zivkovic, I. Fujii, An analysis of isothermal phase change material within rectangular and cylindrical containers. Sol. Energy 70, 51–56 (2001)

    Article  CAS  Google Scholar 

  11. R.M. Abdel-Wahed, J.W. Ramsey, E.M. Sparrow, Photographic study of melting about an embedded horizontal heating cylinder. Int. J. Heat Mass Transf. 22, 171–173 (1979)

    Article  CAS  Google Scholar 

  12. K. Ermis, A. Erek, I. Dincer, Heat transfer analysis of phase change process in a finned-tube thermalenergy storage system using artificial neural network. Int. J. Heat Mass Transf. 50, 3163–3175 (2007)

    Article  Google Scholar 

  13. J. Fukai, Y. Hamada, Y. Morozumi, O. Miyatake, Effect of carbon-fiber brushes on conductive heat transfer in phase change materials. Int. J. Heat Mass Transf. 45, 4781–4792 (2002)

    Article  CAS  Google Scholar 

  14. J.P. Trelles, J.J. Dufly, Numerical simulation of porous latent heat thermal energy storage for thermoelectric cooling. Appl. Therm. Eng. 23, 1647–1664 (2003)

    Article  CAS  Google Scholar 

  15. E.S. Mettawee, G.M.R. Assassa, Thermal conductivity enhancement in a latent heat storage system. Sol. Energy 81, 839–845 (2007)

    Article  CAS  Google Scholar 

  16. P.W. Griffiths, P.C. Eames, Performance of chilled ceiling panels using phase change material slurries as the heat transport medium. Appl. Therm. Eng. 27, 1756–1760 (2007)

    Article  CAS  Google Scholar 

  17. R. Hendra, Hamdani, T.M.I. Mahlia, H.H. Masjuki, Thermal and melting heat transfer characteristics in a latent heat storage system using mikro. Appl. Therm. Eng. 25, 1503–1515 (2005)

    Article  CAS  Google Scholar 

  18. A.F. Regin, S.C. Solanki, J.S. Saini, An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: numerical investigation. Renew Energy 34, 1765–1773 (2009)

    Article  Google Scholar 

  19. P.B. Salunkhe, P.S. Shembekar, A review on effect of phase change material encapsulation on the thermal performance of a system. Renew. Sustain. Energy Rev. 16, 5603–5616 (2012)

    Article  CAS  Google Scholar 

  20. L.F. Cabeza, C. Castellon, M. Nogues, M. Medrano, Use of microencapsulated PCM in concrete walls for energy savings. Energy Build. 39, 113–119 (2007)

    Article  Google Scholar 

  21. T. Nomura, N. Okinaka, T. Akiyama, Technology of latent heat storage for high temperature application: a review. ISIJ Int. 50, 1229–1239 (2010)

    Article  CAS  Google Scholar 

  22. H. Koizumi, Time and spatial heat transfer performance around an isothermally heated sphere placed in a uniform, downwardly directed flow (in relation to the enhancement of latent heat storage rate in a spherical capsule). Appl. Therm. Eng. 24, 2583–2600 (2004)

    Article  CAS  Google Scholar 

  23. L. Bilir, Z. Ilken, Total solidification time of a liquid phase change material enclosed in cylindrical/spherical containers. Appl. Therm. Eng. 25, 1488–1502 (2005)

    Article  CAS  Google Scholar 

  24. M.N.A. Hawlader, M.S. Uddin, M.M. Khin, Microencapsulated PCM thermal-energy storage system. Appl. Energy 74, 195–202 (2003)

    Article  CAS  Google Scholar 

  25. C. Liang, X. Lingling, S. Hongbo, Z. Zhibin, Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system. Energy Convers. Manage. 50, 723–729 (2009)

    Article  Google Scholar 

  26. Y. Fang, S. Kuang, X. Gao, Z. Zhang, Preparation and characterization of novel nanoencapsulatedphase change materials. Energy Convers. Manage. 49, 3704–3707 (2008)

    Article  CAS  Google Scholar 

  27. K. Liu, S. Lee, S. Yang, O. Delaire, J. Wu, Recent progresses on physics and applications of vanadium dioxide. Mater. Today 21, 875e896 (2018)

    Article  Google Scholar 

  28. D.-W. Oh, C. Ko, S. Ramanathan, D.G. Cahill, Thermal conductivity and dy- namic heat capacity across the metal-insulator transition in thin film VO2. Appl. Phys. Lett 96, 151906 (2010)

    Article  Google Scholar 

  29. A. Fallahi, G. Guldentops, M. Tao, S. Granados-Focil, S. Van Dessel, Review on solid-solid phase change materials for thermal energy storage: molecular structure and thermal properties. Appl. Therm. Eng. 127, 1427e1441 (2017)

    Article  Google Scholar 

  30. S.Z.D. Cheng in Phase Transitions in Polymers ed. By S.Z.D. Cheng (Elsevier, Amsterdam, 2008), p. 17–59.

  31. J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J.W.L. Yim, D.R. Khanal, D.F. Ogletree, J.C. Grossman, J. Wu, Strain engineering and one- dimensional organization of metaleinsulator domains in single-crystal va- nadium dioxide beams. Nat. Nanotechnol. 4, 732e737 (2009)

    Article  Google Scholar 

  32. V.S. Nair, R. Nachimuthu, The role of NiTi shape memory alloys in quality of life improvement through medical advancements: a comprehensive review. Proc. Instit. Mechan. Eng. H: J. Eng. Med. (2022). https://doi.org/10.1177/09544119221093460

    Article  Google Scholar 

  33. T. Alkateeb, A. Sunny, Seismic performance of steel frames with shape memory alloy (SMA) bracing system, in Recent developments in sustainable infrastructure (ICRDSI-2020)—Structure and construction management. ed. by B.B. Das, C.P. Gomez, B.G. Mohapatra (Springer, Singapore, 2022), pp.839–846

    Chapter  Google Scholar 

  34. K.P. Davidson, S. Singamneni, The mechanics of machining selective laser melted super duplex stainless steels. J. Mater. Res. Technol. (2022). https://doi.org/10.1016/j.jmrt.2022.01.025

    Article  Google Scholar 

  35. J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.F.X. Wagner, G. Eggeler, Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater. 58(9), 3444–3458 (2010)

    Article  CAS  Google Scholar 

  36. P.R. Halani, I. Kaya, Y.C. Shin, H.E. Karaca, Phase transformation characteristics and mechanical characterization of nitinol synthesized by laser direct deposition. Mater. Sci. Eng. A 559, 836–843 (2013)

    Article  CAS  Google Scholar 

  37. C. Haberland, M. Elahinia, J. Walker, H. Meier, J. Frenzel. Additive manufacturing of shape memory devices and pseudoelastic components. In: Proceedings of ASME 2013 Conference on Smart Materials, Adaptive Structures and Intelligent Systems; 2013 Sep 16–18; Snowbird, UT, USA. New York: ASME; 2013. p. V001T01A005.

  38. M.T. Andani, C. Haberland, J. Walker, M. Elahinia. An investigation of effective process parameters on phase transformation temperature of nitinol manufactured by selective laser melting. In: Proceedings of ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems; 2014 Sep 8–10; Newport, RI, USA. New York: ASME; 2014. p. V001T01A026.

  39. F. Lambrecht, N. Sagardiluz, M. Gueltig, I.R. Aseguinolaza, V.A. Chernenko, M. Kohl, Martensitic transformation in NiMnGa/Si bimorph nanoactuators with ultra-low hysteresis. Appl. Phys. Lett. 110(21), 213104 (2017)

    Article  Google Scholar 

  40. F. Lambrecht, C. Lay, I.R. Aseguinolaza, V. Chernenko, M. Kohl, NiMnGa/Si shape memory bimorph nanoactuation. Shape Memory Superelasticity 2(4), 347–359 (2016)

    Article  Google Scholar 

  41. C.V. Konstantinidou, A. Novoselac, Integration of Thermal Energy Storage in Buildings, Univ. Tex., Austin, 2010. http://hdl.handle.net/2152/44399

  42. F. Souayfane, F. Fardoun, P.H. Biwole, Phase change materials (PCM) for cooling applications in buildings: a review. Energy Build. 129, 396–431 (2016)

    Article  Google Scholar 

  43. S. Kamali, Review of free cooling system using phase change material for building. Energy Build. 80, 131–136 (2014)

    Article  Google Scholar 

  44. S.D. Sharma, D. Buddhi, R.L. Sawhney, A. Sharma, Design, development and performance evaluation of a latent heat storage unit for evening cooking in solar cooker. Energy Convers. Manage. 41, 1497–1508 (2000)

    Article  Google Scholar 

  45. A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 13, 318–345 (2009)

    Article  CAS  Google Scholar 

  46. A. Miliozzi, M. Chieruzzi, L. Torre, Experimental investigation of a cementitious heat storage medium incorporating a solar salt/diatomite composite phase change material. Appl. Energy 250, 1023–1035 (2019)

    Article  CAS  Google Scholar 

  47. L.X. Xiao, Y.T. He, J.Q. Wang, Experimental study on the effect of phase change material melting point on TG/PCM thermal control properties. IOP Conf. Series: Earth Environ. Sci. 701(1), 012021 (2021)

    Google Scholar 

  48. M. Ren, Y. Liu, X. Gao, Incorporation of phase change material and carbon nanofibers into lightweight aggregate concrete for thermal energy regulation in buildings. Energy 197, 117262 (2020)

    Article  CAS  Google Scholar 

  49. Y. Yang, W. Wu, S. Fu, H. Zhang, Study of a novel ceramsite-based shapestabilized composite phase change material (PCM) for energy conservation in buildings. Constr. Build. Mater. 246, 118479 (2020)

    Article  CAS  Google Scholar 

  50. W. Chen, X. Liang, S. Wang, X. Gao, Z. Zhang, Y. Fang, Polyurethane macroencapsulation for CH3COONa_3H2O-Na2S2O3_5H2O/Melamine sponge to fabricate form-stable composite phase change material. Chem. Eng. J. 410, 128308 (2021)

    Article  CAS  Google Scholar 

  51. Y. Ke, C. Zhou, Y. Zhou, S. Wang, S.H. Chan, Y. Long, Emerging thermal-responsive materials and integrated techniques targeting the energy-efficient smart window application. Adv. Funct. Mater. 28, 1800113 (2018)

    Article  Google Scholar 

  52. Y. Zhou, S. Wang, J. Peng, Y. Tan, C. Li, F.Y.C. Boey, Y. Long, Liquid thermo- responsive smart window derived from hydrogel. Joule 4, 2458e2474 (2020)

    Article  Google Scholar 

  53. M.K. Behera, L.C. Williams, S.K. Pradhan, M. Bahoura, Reduced transition temperature in Al:ZnO/VO2 based multi-layered device for low powered smart window application. Sci. Rep. 10, 1824 (2020)

    Article  CAS  Google Scholar 

  54. K. Dong, S. Lou, H.S. Choe, K. Liu, Z. You, J. Yao, J. Wu, Stress compensation for arbitrary curvature control in vanadium dioxide phase transition actuators. Appl. Phys. Lett. 109, 023504 (2016). https://doi.org/10.1063/1.4958692

    Article  CAS  Google Scholar 

  55. Y. Gao, C. Qin, Y. Nie, C. Wang, H. Xu, B. Wang, J. Miao, X. Jiang, Color tunable vanadium dioxide/fluorescent organic small molecule two-layer composite films with thermochromic property. Thin Solid Films 734, 138861 (2021)

    Article  CAS  Google Scholar 

  56. L. Zhang, F. Xia, J. Yao, T. Zhu, H. Xia, G. Yang, B. Liu, Y. Gao, Facile synthesis, formation mechanism and thermochromic properties of W-doped VO2 (M) nanoparticles for smart window applications. J. Mater. Chem. 8, 13396–13404 (2020)

    CAS  Google Scholar 

  57. H. Paik, J.A. Moyer, T. Spila, J.W. Tashman, J.A. Mundy, E. Freeman, N. Shukla, J.M. Lapano, R. Engel-Herbert, W. Zander, J. Schubert, D.A. Muller, S. Datta, P. Schiffer, D.G. Schlom, Transport properties of ultra-thin VO2 films on (001) TiO2 grown by reactive molecularbeam epitaxy. Appl. Phys. Lett. 107, 163101 (2015)

    Article  Google Scholar 

  58. K. Martens, N. Aetukuri, J. Jeong, M.G. Samant, S.S.P. Parkin, Improved metal-insulatortransition characteristics of ultrathin VO2 epitaxial films by optimized surface preparation of rutile TiO2 substrates. Appl. Phys. Lett 104, 081918 (2014)

    Article  Google Scholar 

  59. A.P. Peter, K. Martens, G. Rampelberg, M. Toeller, J.M. Ablett, J. Meersschaut, D. Cuypers, A. Franquet, C. Detavernier, J.-P. Rueff, M. Schaekers, S. Van Elshocht, M. Jurczak, C. Adelmann, I.P. Radu, Metal-insulator transition in ALD VO2 ultrathin films and nanoparticles: morphological control. Adv. Funct. Mater. 25, 679–686 (2015)

    Article  CAS  Google Scholar 

  60. H.H. Park, T.J. Larrabee, L.B. Ruppalt, J.C. Culbertson, S.M. Prokes, Tunable electrical properties of vanadium oxide by hydrogen-plasma-treated atomic layer deposition. ACS Omega 2, 1259–1264 (2017)

    Article  CAS  Google Scholar 

  61. Y.Q. Feng, M.L. Lv, M. Yang, W.X. Ma, G. Zhang, Y.Z. Yu, Y.S. Yang, Application of new energy thermochromic composite thermosensitive materials of smart windows in recent years. Molecules 27, 1638 (2022)

    Article  CAS  Google Scholar 

  62. S.Y. Li, G.A. Niklasson, C.G. Granqvist, Nanothermochromics: calculations for VO2 nanoparticles in dielectric hosts show much improved luminous transmittance and solar energy transmittance modulation. J. Appl. Phys. 108, 063525 (2010)

    Article  Google Scholar 

  63. R. Guo, L. Shan, Y. Wu, Y. Cai, R. Huang, H. Ma et al., Phase-change materials for intelligent temperature regulation. Mater. Today Energy 23, 100888 (2022)

    Article  CAS  Google Scholar 

  64. Z. Chen, Y. Gao, L. Kang, C. Cao, S. Chen, H. Luo, Fine crystalline VO2 nanoparticles: synthesis, abnormal phase transition temperatures and excellent optical properties of a derived VO2 nanocomposite foil. J. Mater. Chem. A 2, 2718 (2014)

    Article  CAS  Google Scholar 

  65. Y. Zhou, Y. Cai, X. Hu, Y. Long, VO2/hydrogel hybrid nanothermochromic material with ultra-high solar modulation and luminous transmission. J. Mater. Chem 3, 1121–1126 (2015)

    Article  CAS  Google Scholar 

  66. Z.X. Li, A.A. Al-Rashed, M. Rostamzadeh, R. Kalbasi, A. Shahsavar, M. Afrand, Heat transfer reduction in buildings by embedding phase change material in multi-layer walls: effects of repositioning, thermophysical properties and thickness of PCM. Energy Convers. Manage. 195, 43–56 (2019)

    Article  Google Scholar 

  67. K. Nakamura, T. Ina, H. Suzuki, R. Hidema, Y. Komoda, Ammonia alum hydrate-based phase change materials for effective use of excess exhaust heat from gas engines. Int. J. Refrig 100, 63–71 (2019)

    Article  CAS  Google Scholar 

  68. M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photon 8, 506–514 (2014)

    Article  CAS  Google Scholar 

  69. M.I. Saidaminov, V. Adinolfi, R. Comin, A.L. Abdelhady, A.L. Peng, W.I. Dursun, O.M. Bakr, Planar-integrated single-crystalline perovskite photodetectors. Nat. Commun. 6, 1–7 (2015)

    Article  Google Scholar 

  70. M. De Bastiani, M.I. Saidaminov, I. Dursun, L. Sinatra, W. Peng, U. Buttner, F.M. Omar, B.M. Osman, Thermochromic perovskite inks for reversible smart window applications. Chem. Mater. 29, 3367–3370 (2017)

    Article  Google Scholar 

  71. L.M. Wheeler, D.T. Moore, R. Ihly, N.J. Stanton, E.M. Miller, R.C. Tenent, J.L. Blackburn, N.R. Neale, Switchable photovoltaic windows enabled by reversible photothermal complex dissociation from methylammonium lead iodide. Nat. Commun. (2017). https://doi.org/10.1038/s41467-017-01842-4

    Article  Google Scholar 

  72. Y. Zhang, C.Y. Tso, J.S. Iñigo, S. Liu, H. Miyazaki, C.Y.H. Chao, Perovskite thermochromic smart window: advanced optical properties and low transition temperature. Appl. Energy 254, 113690 (2019)

    Article  CAS  Google Scholar 

  73. J. Lin, M. Lai, L. Dou, C.S. Kley, H. Chen, F. Peng, J. Sun, D. Lu, S.A. Hawks, C. Xie, F. Cui, Thermochromic halide perovskite solar cells. Nat. Mater. 17, 261–267 (2018)

    Article  CAS  Google Scholar 

  74. Y. Zhai, Y. Ma, S.N. David, D. Zhao, R. Lou, G. Tan, R. Yang, X. Yin, Scalable manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062e1066 (2017)

    Article  Google Scholar 

  75. J. Mandal, Y. Fu, A.C. Overvig, M. Jia, K. Sun, N.N. Shi, H. Zhou, X. Xiao, N. Yu, Y. Yang, Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315e319 (2018)

    Article  Google Scholar 

  76. T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, L. Hu, A radiative cooling structural material. Science 364, 760e763 (2019)

    Article  Google Scholar 

  77. C. Zhou, I. Julianri, S. Wang, S.H. Chan, M. Li, Y. Long, Transparent bamboo with high radiative cooling targeting energy savings. ACS Mater. Lett. 3, 883e888 (2021)

    Google Scholar 

  78. S. Wang, Y. Zhou, T. Jiang, R. Yang, G. Tan, Y. Long, Thermochromic smart windows with highly regulated radiative cooling and solar transmission. Nano Energy 89, 106440 (2021)

    Article  CAS  Google Scholar 

  79. G. Golan, A. Axelevitch, B. Sigalov, B. Gorenstein, Metaleinsulator phase transition in vanadium oxides films. Microelectron. J. 34, 255e258 (2003)

    Article  Google Scholar 

  80. M. Ono, K. Chen, W. Li, S. Fan, Self-adaptive radiative cooling based on phase change materials. Opt. Express 26(18), A777–A787 (2018)

    Article  CAS  Google Scholar 

  81. K. Tang, K. Dong, C.J. Nicolai, Y. Li, J. Li, S. Lou, C.-W. Qiu, D.H. Raulet, J. Yao, J. Wu, Millikelvin-resolved ambient thermography, Sci. Adv. 6, eabd8688 (2020). Separation method, Sol. Energy Mater. 93, 1817e1822 (2009).

  82. K. Liu, C. Cheng, Z. Cheng, K. Wang, R. Ramesh, J. Wu, Giant-amplitude, highwork density microactuators with phase transition activated nanolayer bimorphs. Nano Lett. 12, 6302–6308 (2012)

    Article  CAS  Google Scholar 

  83. Q. Zhao, J. Sun, X. Zhou, J. Deng, Cui, Switchable cavitation: switchable cavitation in silicone coatings for energy-saving cooling and heating. Adv. Mater 32, 2070215 (2020)

    Article  Google Scholar 

  84. J. Chen, Y. Huang, N. Zhang, H. Zou, R. Liu, C. Tao, X. Fan, Z.L. Wang, Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 1, 16138 (2016)

    Article  CAS  Google Scholar 

  85. Z. Xia, Z. Fang, Z. Zhang, K. Shi, Z. Meng, Easy way to achieve self-adaptive cooling of passive radiative materials. ACS Appl. Mater. Interfaces 12, 27241e27248 (2020)

    Article  Google Scholar 

  86. H. Nagano, Y. Nagasaka, A. Ohnishi, Simple deployable radiator with autonomous thermal control function. J. Thermophys. Heat Tran. 20, 856e864 (2006)

    Article  Google Scholar 

  87. H. Ma, J. Hou, X. Wang, J. Zhang, Z. Yuan, L. Xiao, Y. Wei, S. Fan, K. Jiang, K. Liu, Flexible, all-inorganic actuators based on vanadium dioxide and carbon nanotube bimorphs. Nano Lett. 17, 421e428 (2017)

    Article  Google Scholar 

  88. K. Biswas, J. Lu, P. Soroushian, S. Shrestha, Combined experimental and numerical evaluation of a prototype nano-PCM enhanced wallboard. Appl. Energy 131, 517–529 (2014)

    Article  CAS  Google Scholar 

  89. Z. Khan, Z.A. Khan, P. Sewell, Heat transfer evaluation of metal oxides based nano-PCMs for latent heat storage system application. Int. J. Heat Mass Trans. 144, 118619 (2019)

    Article  CAS  Google Scholar 

  90. R. Elbahjaoui, H. El Qarnia, Thermal analysis of nanoparticle-enhanced phase change material solidification in a rectangular latent heat storage unit including natural convection. Energy Build. 153, 1–17 (2017)

    Article  Google Scholar 

  91. Y. Huo, M. Yin, Z. Rao, Heat transfer enhanced by angle-optimized fan-shaped porous medium in phase change thermal energy storage system at pore scale. Int. J. Therm. Sci. 172, 107363 (2022)

    Article  CAS  Google Scholar 

  92. K. Ghasemi, S. Tasnim, S. Mahmud, PCM, nano/microencapsulation and slurries: a review of fundamentals, categories, fabrication, numerical models and applications. Sustain. Energy Technol. Assess. 52, 102084 (2022)

    Google Scholar 

  93. M. Ghalambaz, A. Doostani, A.J. Chamkha, M.A. Ismael, Melting of nanoparticlesenhanced phase-change materials in an enclosure: effect of hybrid nanoparticles. Int. J. Mech. Sci. 134, 85–97 (2017)

    Article  Google Scholar 

  94. M. Parsazadeh, X. Duan, Numerical and statistical study on melting of nanoparticle enhanced phase change material in a shell-and-tube thermal energy storage system. Appl. Therm. Eng 111, 950–960 (2017)

    Article  CAS  Google Scholar 

  95. A.V. Arasu, A.S. Mujumdar, Numerical study on melting of paraffin wax with Al2O3 in a square enclosure. Int. Commun. Heat Mass Transfer 39, 8–16 (2012)

    Article  CAS  Google Scholar 

  96. N.S. Dhaidan, J.M. Khodadadi, T.A. Al-Hattab, S.M. Al-Mashat, Experimental and numerical investigation of melting of NePCM inside an annular container under a constant heat flux including the effect of eccentricity. Int. J. Heat Mass Transf. 67, 455–468 (2013)

    Article  CAS  Google Scholar 

  97. S. Liu, Z. Yan, L. Fu, H. Yang, Hierarchical nano-activated silica nanosheets for thermal energy storage. Sol. Energy Mater. Sol. Cells 167, 140–149 (2017)

    Article  CAS  Google Scholar 

  98. C. Matei, L. Buhǎlteanu, D. Berger, R.-A. Mitran, Functionalized mesoporous silica as matrix for shape-stabilized phase change materials. Int. J. Heat Mass Trans. 144, 118699 (2019)

    Article  CAS  Google Scholar 

  99. S.W. Sharshir, M.A. Rozza, A. Joseph, A.W. Kandeal, A.A. Tareemi, F. Abou-Taleb, A.E. Kabeel, A new trapezoidal pyramid solar still design with multi thermal enhancers. Appl. Therm. Eng. 213, 118699 (2022)

    Article  Google Scholar 

  100. A. Farzanehnia, M. Khatibi, M. Sardarabadi, M. Passandideh-Fard, Experimental investigation of multiwall carbon nanotube/paraffin based heat sink for electronic device thermal management. Energy Conver. Manage 179, 314–325 (2019)

    Article  CAS  Google Scholar 

  101. R.P. Singh, H. Xu, S.C. Kaushik, D. Rakshit, A. Romagnoli, Effective utilization of natural convection via novel fin design & influence of enhanced viscosity due to carbon nano-particles in a solar cooling thermal storage system. Sol. Energy 183, 105–119 (2019)

    Article  CAS  Google Scholar 

  102. M. Sheikholeslami, S.A. Shehzad, Z. Li, A. Shafee, Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int. J. Heat Mass Trans. 127, 614–622 (2018)

    Article  CAS  Google Scholar 

  103. S. Madruga, G.S. Mischlich, Melting dynamics of a phase change material (pcm) with dispersed metallic nanoparticles using transport coefficients from empirical and mean field models. Appl. Therm. Eng. 124, 1123–1133 (2017)

    Article  CAS  Google Scholar 

  104. R.J. Warzoha, A.S. Fleischer, Effect of carbon nanotube interfacial geometry on thermal transport in solid–liquid phase change materials. Appl. Energy 154, 271–276 (2015)

    Article  CAS  Google Scholar 

  105. S. Motahar, N. Nikkam, A.A. Alemrajabi, R. Khodabandeh, M.S. Toprak, M. Muhammed, A novel phase change material containing mesoporous silica nanoparticles for thermal storage: a study on thermal conductivity and viscosity. Int. Commun. Heat Mass Trans. 56, 114–120 (2014)

    Article  CAS  Google Scholar 

  106. J.M. Mahdi, E.C. Nsofor, Solidification enhancement of PCM in a triplextube thermal energy storage system with nanoparticles and fins. Appl. Energy 211, 975–986 (2018)

    Article  CAS  Google Scholar 

  107. N. Sahan, M. Fois, H. Paksoy, Improving thermal conductivity phase change materials—a study of paraffin nanomagnetite composites. Sol. Energy Mater. Sol. Cells 137, 61–67 (2015)

    Article  CAS  Google Scholar 

  108. S. Harish, D. Orejon, Y. Takata, M. Kohno, Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets. Appl. Therm. Eng. 80, 205–211 (2015)

    Article  CAS  Google Scholar 

  109. X. Ma, M. Sheikholeslami, M. Jafaryar, A. Shafee, T. Nguyen-Thoi, Z. Li, Solidification inside a clean energy storage unit utilizing phase change material with copper oxide nanoparticles. J. Clean. Prod. 245, 118888 (2020)

    Article  CAS  Google Scholar 

  110. A. Kazemian, M. Khatibi, S.R. Maadi, T. Ma, Performance optimization of a nanofluid-based photovoltaic thermal system integrated with nano-enhanced phase change material. Appl. Energy 295, 116859 (2021)

    Article  CAS  Google Scholar 

  111. M. Khatibi, R. Nemati-Farouji, A. Taheri, A. Kazemian, T. Ma, H. Niazmand, Optimization and performance investigation of the solidification behavior of nano-enhanced phase change materials in triplex-tube and shell-and-tube energy storage units. J. Energy Storage 33, 102055 (2021)

    Article  Google Scholar 

  112. R. Elarem, R. Alqahtani, T. Mellouli, S. El Awadi, G.A. Algarni, L. Kolsi, Experimental investigations on thermophysical properties of nano-enhanced phase change materials for thermal energy storage applications. Alex. Eng. J. 61, 7037–7044 (2022)

    Article  Google Scholar 

  113. H. Masoumi, S.M. Mirfendereski, Experimental and numerical investigation of melting/solidification of nano-enhanced phase change materials in shell & tube thermal energy storage systems. J. Energy Storage 47, 103561 (2022)

    Article  Google Scholar 

  114. A. Arshad, M. Jabbal, H. Faraji, P. Talebizadehsardari, M.A. Bashir, Y. Yan, Thermal performance of a phase change material-based heat sink in presence of nanoparticles and metalfoam to enhance cooling performance of electronics. J. Energy Storage 48, 103882 (2022)

    Article  Google Scholar 

  115. Y. Pahamli, M.J. Hosseini, A.A. Ranjbar, R. Bahrampoury, Effect of nanoparticle dispersion and inclination angle on melting of PCM in a shell and tube heat exchanger. J. Taiwan Inst. Chem. Eng. 81, 316–334 (2017)

    Article  CAS  Google Scholar 

  116. I. Al Siyabi, S. Khanna, T. Mallick, S. Sundaram, An experimental and numerical study on the effect of inclination angle of phase change materials thermal energy storage system. J. Energy Storage 23, 57–68 (2019)

    Article  Google Scholar 

  117. X. Yang, Z. Guo, Y. Liu, L. Jin, Y.L. He, Effect of inclination on the thermal response of composite phase change materials for thermal energy storage. Appl. Energy 238, 22–33 (2019)

    Article  CAS  Google Scholar 

  118. R. Kothari, S.K. Sahu, S.I. Kundalwal, S.P. Sahoo, Experimental investigation of the effect of inclination angle on the performance of phase change material based finned heat sink. J. Energy Storage 37(102462), 136 (2021)

    Google Scholar 

  119. L. Kong, J. Yu, G. Cai, Modeling, control and simulation of a photovoltaic/hydrogen/supercapacitor hybrid power generation system for grid-connected applications. Int. J. Hydrogen Energy 44(25129–25144), 137 (2019)

    Google Scholar 

  120. N. Choubineh, H. Jannesari, A. Kasaeian, Experimental study of the effect of using phase change materials on the performance of an air-cooled photovoltaic system. Renew. Sustain. Energy Rev. 101(103–111), 138 (2019)

    Google Scholar 

  121. F. Hassan, F. Jamil, A. Hussain, H.M. Ali, M.M. Janjua, S. Khushnood, C. Li, Recent advancements in latent heat phase change materials and their applications for thermal energy storage and buildings: a state of the art review. Sustain. Energy Technol. Assess. 49, 101646 (2022)

    Google Scholar 

  122. A. Sohani, A. Dehnavi, H. Sayyaadi, S. Hoseinzadeh, E. Goodarzi, D.A. Garcia, D. Groppi, The real-time dynamic multi-objective optimization of a building integrated photovoltaic thermal (BIPV/T) system enhanced by phase change materials. J. Energy Storage 46(103777), 141 (2022)

    Google Scholar 

  123. T. Maatallah, R. Zachariah, F.G. Al-Amri, Exergo-economic analysis of a serpentine flow type water based photovoltaic thermal system with phase change material (PVT-PCM/water). Sol. Energy 193, 195–204 (2019)

    Article  Google Scholar 

  124. H. Xu, C. Zhang, N. Wang, Z. Qu, S. Zhang, Experimental study on the performance of a solar photovoltaic/thermal system combined with phase change material. Sol. Energy 198(202–211), 144 (2020)

    Google Scholar 

  125. K. Velmurugan, V. Karthikeyan, T.B. Korukonda, P. Poongavanam, S. Nadarajan, S. Kumarasamy, T. Wongwuttanasatian, D. Sandeep, Experimental studies on photovoltaic module temperature reduction using eutectic cold phase change material. Sol. Energy 209(302–315), 145 (2020)

    Google Scholar 

  126. H. Fayaz, N.A. Rahim, M. Hasanuzzaman, A. Rivai, R. Nasrin, Numerical and outdoor real time experimental investigation of performance of PCM based PVT system. Sol. Energy 179, 135–150 (2019)

    Article  Google Scholar 

  127. A. Elminshawy, K. Morad, N.A. Elminshawy, Y. Elhenawy, Performance enhancement of concentrator photovoltaic systems using nanofluids. Int. J. Energy Res. 45, 2959–2979 (2021)

    Article  CAS  Google Scholar 

  128. A.H. Al-Waeli, K. Sopian, M.T. Chaichan, H.A. Kazem, A. Ibrahim, S. Mat, M.H. Ruslan, Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: an experimental study. Energy Convers. Manage. 151, 693–708 (2017)

    Article  CAS  Google Scholar 

  129. J.Y. Long, D.S. Zhu, Numerical and experimental study on heat pump water heater with PCM for thermal storage. Energy Build. 40, 666–672 (2008)

    Article  Google Scholar 

  130. Y.G. Jung, S.E. Kim, M.S. Yoo, J.C. Park, According to PCM application in radiant floor heating system temperature change and energy consumption comparison mock-up experiment. J. Archit. Ins. Korea 38, 207–213 (2022)

    Google Scholar 

  131. S. Cunha, J.B. Aguiar, F. Pacheco-Torgal, Effect of temperature on mortars with incorporation of phase change materials. Constr. Build. Mater 98, 89–101 (2015)

    Article  Google Scholar 

  132. M. Ahmad, A. Bontemps, H. Sallée, D. Quenard, Experimental investigation and computer simulation of thermal behaviour of wallboards containing a phase change material. Energy Build. 38, 357–366 (2016)

    Article  Google Scholar 

  133. X. Jin, M.A. Medina, X. Zhang, On the importance of the location of PCMs in building walls for enhanced thermal performance. Appl. Energy 106, 72–78 (2013)

    Article  Google Scholar 

  134. K. Lin, Y. Zhang, X. Xu, H. Di, R. Yang, P. Qin, Experimental study of under-floor electric heating system with shape-stabilized PCM plates. Energy Build 37, 215–220 (2005). https://doi.org/10.1016/j.enbuild.2004.06.017

    Article  Google Scholar 

  135. M. Kheradmand, M. Azenha, J.L. de Aguiar, J. Castro-Gomes, Experimental and numerical studies of hybrid PCM embedded in plastering mortar for enhanced thermal behaviour of buildings. Energy 94, 250–261 (2016)

    Article  CAS  Google Scholar 

  136. A. Athienitis, C. Liu, D. Hawes, D. Banu, D. Feldman, Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. Build. Environ. 32, 405–410 (1997). https://doi.org/10.1016/s0360-1323(97)00009-7

    Article  Google Scholar 

  137. H. Tommerup, S. Svendsen, Energy savings in Danish residential building stock. Energy Build. 38(6), 618–626 (2006)

    Article  Google Scholar 

  138. N. Lin, C. Li, D. Zhang, Y. Li, J. Chen, Emerging phase change cold storage materials derived from sodium sulfate decahydrate. Energy 245, 123294 (2022)

    Article  CAS  Google Scholar 

  139. I. Shamseddine, F. Pennec, P. Biwole, F. Fardoun, Supercooling of phase change materials: a review. Renew. Sustain. Energy Rev. 158, 112172 (2022)

    Article  CAS  Google Scholar 

  140. V. Fegade, K. Gupta, M. Ramachandran, S. Madhu, C. Sathiyaraj, R. Kurinji alar, M. Amudha, A study on various fire retardant additives used for fire reinforced polymeric composites. AIP Conf. Proc. 2393, 020107 (2022)

    Article  CAS  Google Scholar 

  141. L. Boussaba, A. Foufa, S. Makhlouf, G. Lefebvre, L. Royon, Elaboration and properties of a composite bio-based PCM for an application in building envelopes. Constr. Build. Mater. 185, 156–165 (2018)

    Article  Google Scholar 

  142. X. Mi, R. Liu, H. Cui, S.A. Memon, F. Xing, Y. Lo, Energy and economic analysis of building integrated with PCM in different cities of China. Appl. Energy 175, 324–336 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Department of science and Technology—Science Engineering Research Board, Early Carrier Research Award (ECR/2018/000709) and Indian Council of Medical Research (ICMR Adhoc-5/3/8/53/2020—ITR) for funding the research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Varadharajan or Kirthanashri S. Vasanthan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 349 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varadharajan, S., Vasanthan, K.S. & Verma, S. Recent development in nano-phase change materials and their applications in enhancing thermal capacity of intelligent buildings: A state-of-the art review. Journal of Materials Research 38, 1463–1487 (2023). https://doi.org/10.1557/s43578-023-00907-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-023-00907-z

Keywords

Navigation