Skip to main content
Log in

Atomistic simulations of diffusive phase transformations with non-conservative point defects

  • Computational Approaches for Materials Discovery and Development Prospective
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Most of the phase transformations modifying the microstructure, thereby the materials properties, are controlled by the diffusion of atoms. The rate but also the selection of phase transformations depend on the concentration of lattice point defects (PDs), because substitutional atoms exchange with PDs to diffuse and PDs are non-conservative species. During manufacturing or in use, whenever PD diffusion and creation/annihilation reactions at extended defects in the microstructure are slower than the kinetics of the microstructure, these PDs may not have their equilibrium concentration. A departure of PDs from local equilibrium can be transient under thermal conditions, or permanent in materials driven out of equilibrium as under irradiation. Non-equilibrium PDs can have a dramatic effect on the evolution of the microstructure or even on the stationary microstructure in driven systems. We present an atomic kinetic Monte Carlo (AKMC) method, which is able to tackle the atomic-scale couplings between PD diffusion, annihilation/creation reactions and the kinetics of decomposition of a solid solution into a two-phase microstructure. By introducing PD source-and-sinks (SAS) at specific lattice sites, we control the PD reactions and highlight the role of non-equilibrium quenched-in point defects on the evolution kinetics of short-range order parameters and subsequent second-phase precipitation. Then, we open the discussion on various kinetic phenomena that require taking into account the role of non-equilibrium PDs at different scales of time and space.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. E.O. Kirkendall, Diffusion of Zinc in Alpha Brass (Metallurgical, and Petroleum Engineers, The American Institute of Mining, 1942)

    Google Scholar 

  2. C. Herring, Diffusional viscosity of a polycrystalline solid. J. Appl. Phys. 21, 437–445 (1950). https://doi.org/10.1063/1.1699681

    Article  Google Scholar 

  3. S.J. Zinkle, G.S. Was, Materials challenges in nuclear energy. Acta Mater. 61, 735–758 (2013). https://doi.org/10.1016/j.actamat.2012.11.004 (The Diamond Jubilee Issue)

  4. H. Mehrer, Diffusion in Solids (Springer, Berlin, 2007)

    Book  Google Scholar 

  5. A. Van der Ven, H.-C. Yu, G. Ceder, K. Thornton, Vacancy mediated substitutional diffusion in binary crystalline solids. Prog. Mater. Sci. 55, 61–105 (2010). https://doi.org/10.1016/j.pmatsci.2009.08.001

    Article  CAS  Google Scholar 

  6. T. Schuler, M. Nastar, Transport properties of dilute \(\alpha \text{- }\rm Fe ({X})\) solid solutions (\({X}\) = C, N, O). Phys. Rev. B 93, 224101 (2016). https://doi.org/10.1103/PhysRevB.93.224101

    Article  CAS  Google Scholar 

  7. T. Schuler, M. Nastar, L. Messina, Mass-transport properties of ternary Fe(C, O) alloys revealed by multicomponent cluster synergies. Phys. Rev. Mater. 4, 020401 (2020). https://doi.org/10.1103/PhysRevMaterials.4.020401

    Article  CAS  Google Scholar 

  8. M. Nastar, F. Soisson, Radiation-induced segregation, in Comprehensive Nuclear Materials, 2nd edn., vol. 1 (Elsevier, Amsterdam, 2020), pp. 235–264. https://doi.org/10.1016/B978-0-12-803581-8.00668-8

  9. T.R. Anthony, Solute segregation in vacancy gradients generated by sintering and temperature changes. Acta Metall. 17, 603–609 (1969). https://doi.org/10.1016/0001-6160(69)90120-5

    Article  CAS  Google Scholar 

  10. M. Militzer, W.P. Sun, J.J. Jonas, Modelling the effect of deformation-induced vacancies on segregation and precipitation. Acta Metall. Mater. 42, 133–141 (1994). https://doi.org/10.1016/0956-7151(94)90056-6

    Article  CAS  Google Scholar 

  11. C. Desgranges, F. Lequien, E. Aublant, M. Nastar, D. Monceau, Depletion and voids formation in the substrate during high temperature oxidation of Ni–Cr alloys. Oxid. Met. 79, 93–105 (2013). https://doi.org/10.1007/s11085-012-9328-0

    Article  CAS  Google Scholar 

  12. S.M. Hu, Nonequilibrium point defects and diffusion in silicon. Mater. Sci. Eng. R Rep. 13, 105–192 (1994). https://doi.org/10.1016/0927-796X(94)90009-4

    Article  Google Scholar 

  13. M. Bobeth, M. Gutkin, W. Pompe, A.E. Romanov, Modelling of vacancy diffusion and pore formation during parabolic oxide growth. Physica Status Solidi (A) 165, 165–184 (1998). https://doi.org/10.1002/(SICI)1521-396X(199801)165:1<165::AID-PSSA165>3.0.CO;2-U

  14. R. Nakamura, G. Matsubayashi, H. Tsuchiya, S. Fujimoto, H. Nakajima, Formation of oxide nanotubes via oxidation of Fe, Cu and Ni nanowires and their structural stability: Difference in formation and shrinkage behavior of interior pores. Acta Mater. 57, 5046–5052 (2009). https://doi.org/10.1016/j.actamat.2009.07.006

    Article  CAS  Google Scholar 

  15. J.E. Masse, P. Knauth, P. Gas, A. Charaï, Point defect creation induced by solid state reaction between nickel and silicon. J. Appl. Phys. 77, 934–936 (1995). https://doi.org/10.1063/1.359021

    Article  CAS  Google Scholar 

  16. T.P. Martin, H.L. Aldridge, K.S. Jones, R.A. Camillo-Castillo, Use of a buried loop layer as a detector of interstitial flux during oxidation of \(\rm SiGe\) heterostructures. J. Vacuum Sci. Technol. A 35, 021101 (2017). https://doi.org/10.1116/1.4972516

    Article  CAS  Google Scholar 

  17. S.I. Maydet, K.C. Russell, Precipitate stability under irradiation: point defect effects. J. Nucl. Mater. 64, 101–114 (1977). https://doi.org/10.1016/0022-3115(77)90013-7

    Article  CAS  Google Scholar 

  18. K.C. Russell, The theory of phase stability under irradiation. J. Nucle. Mater. 83, 176–185 (1979). https://doi.org/10.1016/0022-3115(79)90603-2

    Article  CAS  Google Scholar 

  19. V.V. Voronkov, R. Falster, Vacancy-type microdefect formation in czochralski silicon. J. Cryst. Growth 194, 76–88 (1998). https://doi.org/10.1016/S0022-0248(98)00550-8

    Article  CAS  Google Scholar 

  20. M. Nastar, L.T. Belkacemi, E. Meslin, M. Loyer-Prost, Thermodynamic model for lattice point defect-mediated semi-coherent precipitation in alloys. Commun. Mater. 2, 32 (2021). https://doi.org/10.1038/s43246-021-00136-z

    Article  CAS  Google Scholar 

  21. M.D. McCluskey, A. Janotti, Defects in semiconductors. J. Appl. Phys. 127, 190401 (2020). https://doi.org/10.1063/5.0012677

    Article  CAS  Google Scholar 

  22. A. Van der Ven, G. Ceder, Vacancies in ordered and disordered binary alloys treated with the cluster expansion. Phys. Rev. B 71, 054102 (2005). https://doi.org/10.1103/PhysRevB.71.054102

    Article  CAS  Google Scholar 

  23. A.A. Belak, A. Van der Ven, Effect of disorder on the dilute equilibrium vacancy concentrations of multicomponent crystalline solids. Phys. Rev. B 91, 224109 (2015). https://doi.org/10.1103/PhysRevB.91.224109

    Article  CAS  Google Scholar 

  24. M. Nastar, F. Soisson, Atomistic modeling of phase transformations: point-defect concentrations and the time-scale problem. Phys. Rev. B 86, 220102 (2012). https://doi.org/10.1103/PhysRevB.86.220102

    Article  CAS  Google Scholar 

  25. K. Li, C.-C. Fu, M. Nastar, F. Soisson, M.Y. Lavrentiev, Magnetochemical effects on phase stability and vacancy formation in fcc Fe–Ni alloys. Phys. Rev. B 106, 024106 (2022). https://doi.org/10.1103/PhysRevB.106.024106

    Article  CAS  Google Scholar 

  26. D. Gendt, PhD thesis, Université de Paris XI, Orsay (2001)

  27. C. Hin, Y. Bréchet, P. Maugis, F. Soisson, Kinetics of heterogeneous dislocation precipitation of NbC in alpha-iron. Acta Mater. 56, 5535–5543 (2008). https://doi.org/10.1016/j.actamat.2008.07.044

    Article  CAS  Google Scholar 

  28. T. Jourdan, F. Soisson, E. Clouet, A. Barbu, Influence of cluster mobility on Cu precipitation in \(\alpha\)-Fe: A cluster dynamics modeling. Acta Mater. 58, 3400–3405 (2010). https://doi.org/10.1016/j.actamat.2010.02.014

    Article  CAS  Google Scholar 

  29. M.H. Mathon, A. Barbu, F. Dunstetter, F. Maury, N. Lorenzelli, C.H. de Novion, Experimental study and modelling of copper precipitation under electron irradiation in dilute FeCu binary alloys. J. Nucl. Mater. 245, 224–237 (1997). https://doi.org/10.1016/S0022-3115(97)00010-X

    Article  CAS  Google Scholar 

  30. P. Sindzingre, G. Ciccotti, C. Massobrio, D. Frenkel, Partial enthalpies and related quantities in mixtures from computer simulation. Chem. Phys. Lett. 136, 35–41 (1987). https://doi.org/10.1016/0009-2614(87)87294-9

    Article  CAS  Google Scholar 

  31. L. Barnard, G.A. Young, B. Swoboda, S. Choudhury, A. Van der Ven, D. Morgan, J.D. Tucker, Atomistic modeling of the order-disorder phase transformation in the Ni\(_2\)Cr model alloy. Acta Mater. 81, 258–271 (2014). https://doi.org/10.1016/j.actamat.2014.08.017

    Article  CAS  Google Scholar 

  32. Y. Le Bouar, F. Soisson, Kinetic pathways from embedded-atom-method potentials: Influence of the activation barriers. Phys. Rev. B 65, 094103 (2002). https://doi.org/10.1103/PhysRevB.65.094103

    Article  CAS  Google Scholar 

  33. F. Soisson, C.-C. Fu, Cu-precipitation kinetics in \(\alpha \text{- }\rm Fe\) from atomistic simulations: vacancy-trapping effects and Cu-cluster mobility. Phys. Rev. B 76, 214102 (2007). https://doi.org/10.1103/PhysRevB.76.214102

    Article  CAS  Google Scholar 

  34. L.A. Girifalco, Vacancy concentration and diffusion in order-disorder alloys. J. Phys. Chem. Solids 25, 323–333 (1964). https://doi.org/10.1016/0022-3697(64)90111-8

    Article  CAS  Google Scholar 

  35. A.B. Bortz, M.H. Kalos, J.L. Lebowitz, A new algorithm for Monte Carlo simulation of ising spin systems. J. Comput. Phys. 17, 10–18 (1975). https://doi.org/10.1016/0021-9991(75)90060-1

    Article  Google Scholar 

  36. F. Soisson, T. Jourdan, Radiation-accelerated precipitation in Fe–Cr alloys. Acta Mater. 103, 870–881 (2016). https://doi.org/10.1016/j.actamat.2015.11.001

    Article  CAS  Google Scholar 

  37. E. Schulz, A. Mehta, S.H. Park, Y. Sohn, Effects of marker size and distribution on the development of Kirkendall voids, and coefficients of interdiffusion and intrinsic diffusion. J. Phase Equilib. Diffus. 40, 156–169 (2019). https://doi.org/10.1007/s11669-019-00710-6

  38. J. Lothe, J.P. Hirth, Dislocation climb forces. J. Appl. Phys. 38, 845–848 (1967). https://doi.org/10.1063/1.1709423

    Article  CAS  Google Scholar 

  39. J. Weertman, The Peach–Koehler equation for the force on a dislocation modified for hydrostatic pressure. Philos. Mag. A J. Theor. Exp. Appl. Phys. 11, 1217–1223 (1965). https://doi.org/10.1080/14786436508224930

  40. Z. Qin, G.E. Murch, Computer simulation of chemical diffusion in a binary alloy with an equilibrium concentration of vacancies. Philos. Mag. A 71, 323–332 (1995). https://doi.org/10.1080/01418619508244359.

    Article  CAS  Google Scholar 

  41. A. Gusak, S. Kornienko, G.V. Lutsenko, Nonequilibrium vacancies in nanosystems. In: Diffusion and Stresses. Defect and Diffusion Forum, vol. 264. (Trans Tech Publications Ltd, Bäch, 2007), pp. 109–116. https://doi.org/10.4028/www.scientific.net/DDF.264.109

  42. M. Nastar, Atomic diffusion theory challenging the Cahn–Hilliard method. Phys. Rev. B 90, 144101 (2014). https://doi.org/10.1103/PhysRevB.90.144101

    Article  CAS  Google Scholar 

  43. G. Martin, C. Desgranges, Diffusion in crystals with nonconservative defects. Europhys. Lett. (EPL) 44, 150–155 (1998). https://doi.org/10.1209/epl/i1998-00449-1

    Article  CAS  Google Scholar 

  44. J. Svoboda, F.D. Fischer, P. Fratzl, Diffusion and creep in multi-component alloys with non-ideal sources and sinks for vacancies. Acta Mater. 54, 3043–3053 (2006). https://doi.org/10.1016/j.actamat.2006.02.041

    Article  CAS  Google Scholar 

  45. K. Garikipati, L. Bassman, M. Deal, A lattice-based micromechanical continuum formulation for stress-driven mass transport in polycrystalline solids. J. Mech. Phys. Solids 49, 1209–1237 (2001). https://doi.org/10.1016/S0022-5096(00)00081-8

    Article  CAS  Google Scholar 

  46. S. Kovacevic, S.D. Mesarovic, Diffusion-induced stress concentrations in diffusional creep. Int. J. Solids Struct. 239–240, 111440 (2022). https://doi.org/10.1016/j.ijsolstr.2022.111440

    Article  Google Scholar 

  47. S.D. Mesarovic, Dislocation creep: climb and glide in the lattice continuum. Crystals (2017). https://doi.org/10.3390/cryst7080243

  48. J. Wang, M. Huang, Y. Zhu, S. Liang, Z. Li, Vacancy diffusion coupled discrete dislocation dynamic modeling of compression creep of micro-pillars at elevated temperature. Int. J. Solids Struct. 193–194, 375–392 (2020). https://doi.org/10.1016/j.ijsolstr.2020.02.024

    Article  Google Scholar 

  49. A. Badillo, P. Bellon, R.S. Averback, A phase field model for segregation and precipitation induced by irradiation in alloys. Model. Simul. Mater. Sci. Eng. 23, 035008 (2015). https://doi.org/10.1088/0965-0393/23/3/035008

    Article  CAS  Google Scholar 

  50. D. Carpentier, T. Jourdan, Y. Le Bouar, M.-C. Marinica, Effect of saddle point anisotropy of point defects on their absorption by dislocations and cavities. Acta Mater. 136, 323–334 (2017). https://doi.org/10.1016/j.actamat.2017.07.013

    Article  CAS  Google Scholar 

  51. M. Kabir, T.T. Lau, D. Rodney, S. Yip, K.J. Van Vliet, Predicting dislocation climb and creep from explicit atomistic details. Phys. Rev. Lett. 105, 095501 (2010). https://doi.org/10.1103/PhysRevLett.105.095501

    Article  CAS  Google Scholar 

  52. E. Clouet, Predicting dislocation climb: Classical modeling versus atomistic simulations. Phys. Rev. B 84, 092106 (2011). https://doi.org/10.1103/PhysRevB.84.092106

    Article  Google Scholar 

  53. L. Onsager, Phys. Rev. 37, 405 (1931). https://doi.org/10.1103/PhysRev.37.405

    Article  CAS  Google Scholar 

  54. K.C. Russell, Phase stability under irradiation. Prog. Mater. Sci. 28, 229–434 (1984). https://doi.org/10.1016/0079-6425(84)90001-X

    Article  CAS  Google Scholar 

  55. A.J. Ardell, P. Bellon, Radiation-induced solute segregation in metallic alloys. Curr. Opin. Solid State Mater. Sci. 20, 115–139 (2016). https://doi.org/10.1016/j.cossms.2015.11.001

    Article  CAS  Google Scholar 

  56. L. Huang, K. Ma, L.T. Belkacemi, M. Loyer-Prost, E. Meslin, E. Toijer, L. Messina, C. Domain, J. Vidal, M. Nastar, Impact of the local microstructure fluctuations on radiation-induced segregation in dilute Fe–Ni and Ni–Ti model alloys: a combined modeling and experimental analysis. Acta Mater. 225, 117531 (2022). https://doi.org/10.1016/j.actamat.2021.117531

    Article  CAS  Google Scholar 

  57. L. Huang, M. Nastar, T. Schuler, L. Messina, Multiscale modeling of the effects of temperature, radiation flux, and sink strength on point-defect and solute redistribution in dilute Fe-based alloys. Phys. Rev. Mater. 5, 033605 (2021). https://doi.org/10.1103/PhysRevMaterials.5.033605

    Article  CAS  Google Scholar 

  58. J.B. Piochaud, M. Nastar, F. Soisson, L. Thuinet, A. Legris, Atomic-based phase-field method for the modeling of radiation induced segregation in Fe–Cr. Comput. Mater. Sci. 122, 249–262 (2016). https://doi.org/10.1016/j.commatsci.2016.05.021

    Article  CAS  Google Scholar 

  59. L. Thuinet, M. Nastar, E. Martinez, G.F. Bouobda Moladje, A. Legris, F. Soisson, Multiscale modeling of radiation induced segregation in iron based alloys. Comput. Mater. Sci. 149, 324–335 (2018). https://doi.org/10.1016/j.commatsci.2018.03.024

    Article  CAS  Google Scholar 

  60. O. Senninger, F. Soisson, E. Martinez, M. Nastar, C.-C. Fu, Y. Bréchet, Modeling radiation induced segregation in iron-chromium alloys. Acta Mater. 103, 1–11 (2016). https://doi.org/10.1016/j.actamat.2015.09.058

    Article  CAS  Google Scholar 

  61. E. Martínez, O. Senninger, A. Caro, F. Soisson, M. Nastar, B.P. Uberuaga, Role of sink density in nonequilibrium chemical redistribution in alloys. Phys. Rev. Lett. 120, 106101 (2018). https://doi.org/10.1103/PhysRevLett.120.106101

    Article  Google Scholar 

  62. L. Messina, M. Nastar, N. Sandberg, P. Olsson, Systematic electronic-structure investigation of substitutional impurity diffusion and flux coupling in bcc iron. Phys. Rev. B 93, 184302 (2016). https://doi.org/10.1103/PhysRevB.93.184302

    Article  CAS  Google Scholar 

  63. A.C.P. Jain, P.A. Burr, D.R. Trinkle, First-principles calculations of solute transport in zirconium: vacancy-mediated diffusion with metastable states and interstitial diffusion. Phys. Rev. Mater. 3, 033402 (2019). https://doi.org/10.1103/PhysRevMaterials.3.033402

    Article  CAS  Google Scholar 

  64. E. Toijer, L. Messina, C. Domain, J. Vidal, C.S. Becquart, P. Olsson, Solute-point defect interactions, coupled diffusion, and radiation-induced segregation in fcc nickel. Phys. Rev. Mater. 5, 013602 (2021). https://doi.org/10.1103/PhysRevMaterials.5.013602

    Article  CAS  Google Scholar 

  65. F. Soisson, E. Meslin, O. Tissot, Atomistic modeling of \(\alpha\) precipitation in Fe–Cr alloys under charged particles and neutron irradiations: effects of ballistic mixing and sink densities. J. Nucl. Mater. 508, 583–594 (2018). https://doi.org/10.1016/j.jnucmat.2018.06.015

    Article  CAS  Google Scholar 

  66. F.A. Garner, J.M. McCarthy, K.C. Russell, J.J. Hoyt, Spinodal-like decomposition of Fe–35Ni and Fe–Cr–35Ni alloys during irradiation or thermal aging. J. Nucl. Mater. 205, 411–425 (1993). https://doi.org/10.1016/0022-3115(93)90105-8

    Article  CAS  Google Scholar 

  67. A.G. Khachaturyan, Theory of Structural Transformations in Solids (Wiley, New York, 1983)

  68. L. Bourgeois, Y. Zhang, Z. Zhang, Y. Chen, N.V. Medhekar, Transforming solid-state precipitates via excess vacancies. Nat. Commun. 11, 1248 (2020). https://doi.org/10.1038/s41467-020-15087-1

    Article  CAS  Google Scholar 

  69. T. Schuler, M. Nastar, F. Soisson, Vacancy-induced dissolution of precipitates in out-of-equilibrium systems: a test case of \({{\rm Fe}}X(X={{\rm C, N, O}})\) alloys. Phys. Rev. B 95, 014113 (2017). https://doi.org/10.1103/PhysRevB.95.014113

  70. L.T. Belkacemi, E. Meslin, B. Décamps, B. Radiguet, J. Henry, Radiation-induced bcc-fcc phase transformation in a \({Fe}{-}3{Ni}\) alloy. Acta Mater. 161, 61–72 (2018). https://doi.org/10.1016/j.actamat.2018.08.031

    Article  CAS  Google Scholar 

  71. D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys (Chapman and Hall, London, 1992), pp. 18–23

Download references

Acknowledgments

We thank Chu-Chun Fu, Kangming Li, and Thomas Schuler for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Soisson.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: AKMC parameters

The interatomic pair interactions of the A-B system are between first nearest-neighbor lattice sites only. They are equal to \(\varepsilon _\mathrm{AA}=-1.05\), \(\varepsilon _\mathrm{BB}=-1.05\) and \(\varepsilon _\mathrm{AB}=-1.025\) eV, which gives an ordering energy equal to \(v=\varepsilon _\mathrm{AA}+\varepsilon _\mathrm{BB}-2\varepsilon _\mathrm{AB}=-0.05\) eV. The atom-vacancy pair interactions are set to \(\varepsilon _\mathrm{AV}=-0.40\) and \(\varepsilon _\mathrm{BV}=-0.35\) eV.

When an atom is at the saddle-point, during its exchange with a vacancy, it interacts with with the 6 nearest neighbors. The corresponding pair interactions are equal to \(\varepsilon _\mathrm{AA}^\mathrm{sp}=-1.500\) and \(\varepsilon _\mathrm{AB}^\mathrm{sp}=-1.55\) eV for a A atom, and \(\varepsilon _\mathrm{BA}^\mathrm{sp}=-1.500\) and \(\varepsilon _\mathrm{BB}^\mathrm{sp}=-1.55\) eV for a B atom. These interaction parameters control the migration barriers. For instance, they give 1.15 eV for an A-V exchange in pure A, 1.025 eV for a B-V exchange in pure A, 1.25 eV for a B-V exchange in pure B, and 1.025 eV for a A-V exchange in pure B.

The saddle-point parameters that control the kinetics of vacancy creation/annihilation reactions at source/sink sites are set to \(Q_\mathrm{AA}^\mathrm{sp}=Q_\mathrm{BA}^\mathrm{sp}=-6.6\), \(Q_\mathrm{AB}^{sp}=Q_\mathrm{AB}^\mathrm{sp}=6.7\) eV for the simulations at 1000 K. The same parameters are all set to \(-6.35\) eV for the simulations at 600 K.

Appendix 2: Chemical potentials

The chemical potentials of atoms A and B in binary alloys AB of different compositions at \(T=600\) K are plotted in Fig. 10. The circles are the values extracted from Monte Carlo simulations in the semi-grand canonical ensemble (GCMC). In GCMC simulations, the difference \(\Delta \mu =\mu _\mathrm{B}-\mu _\mathrm{A}\) is imposed, the values of \(\mu _\mathrm{A}\) and \(\mu _\mathrm{B}\) are then deduced from the Helmholtz free energy: \(F=(1-X_\mathrm{B})\mu _\mathrm{A}+X_\mathrm{B}\mu _\mathrm{B}\) obtained by integration of \(\mu _\mathrm{B}-\mu _\mathrm{A}\) with respect to the atomic fraction of B. The values predicted by the Bragg–Williams approximation (regular solution model, see e.g., Ref. 71) are shown for comparison.

Figure 10
figure 10

Chemical potentials of A and B atoms at 600 K, as a function of the B concentration.

The GCMC simulations only give the chemical potentials of stable or metastable solid solutions (\(X_\mathrm{B} \lesssim 0.05\) and \(X_\mathrm{B} \gtrsim 0.95\) in Fig. 10). The values of \(\mu _\mathrm{A}\) and \(\mu _\mathrm{B}\) used in the NCV-AKMC simulations are set equal to the GCMC measured values as long as the composition of the local finite volume centered on the SAS site \(X_\mathrm{B}^s\) (fraction of B atoms among the first and second nearest neighbors of the SAS site) is the one of a stable solid solution (\(X_\mathrm{B}^s<X_\mathrm{B}^\alpha\) or \(X_\mathrm{B}^s>X_\mathrm{B}^\beta\)). For intermediate compositions (\(X_\mathrm{B}^\alpha<X_\mathrm{B}^s<X_\mathrm{B}^\beta\)), the chemical potentials are set to their equilibrium two-phase values, i.e.,: \(\mu _\mathrm{A}=\mu _\mathrm{A}(X_\mathrm{B}^\alpha )=\mu _\mathrm{A}(X_\mathrm{B}^\beta )\), and \(\mu _\mathrm{B}=\mu _\mathrm{B}(X_\mathrm{B}^\alpha )=\mu _\mathrm{B}(X_\mathrm{B}^\beta )\) (corresponding to the dashed-dotted line in Fig. 10). For the equilibrium compositions \(X_\mathrm{B}^\alpha\) and \(X_\mathrm{B}^\beta\), the differences between the Monte Carlo and the Bragg–Williams chemical potentials are relatively small (\(\sim 0.008\) eV), but leads to differences of approx. 15% on the equilibrium vacancy concentration, \(X_\mathrm{V}^\mathrm{eq}\), at 600 K.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soisson, F., Nastar, M. Atomistic simulations of diffusive phase transformations with non-conservative point defects. MRS Communications 12, 1015–1029 (2022). https://doi.org/10.1557/s43579-022-00279-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00279-1

Keywords

Navigation