Skip to main content
Log in

Toward remote and secure authentication: Disambiguation of magnetic microwire signatures using neural networks

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Secure and high-throughput authentication systems require materials with uniquely identifiable responses that can be remotely detected and rapidly disambiguated. To this end, complex electromagnetic responses from arrangements of amorphous ferromagnetic microwires were analyzed using machine learning. These novel materials deliver maximal spectral dispersion when the frequency of incident electromagnetic radiation matches the microwire resonance. Utilizing data obtained from 225 unique microwire arrangements, a neural network reproduced the response distribution of unseen data to a confidence level of 90%, with a mean square error less than 0.01. This favorable performance affirms the potential of magnetic microwires for use in tags for secure article surveillance systems.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Data availability

The authors will not make data used for training the neural network models available since they are part of an IP disclosure.

Code availability

The code used for analysis will be made available on request.

References

  1. T.K. Mackey, G. Nayyar, A review of existing and emerging digital technologies to combat the global trade in fake medicines. Expert Opin. Drug Saf. 16(5), 587–602 (2017)

    Article  Google Scholar 

  2. M. Attaran, Digital technology enablers and their implications for supply chain management. Supply Chain Forum 21, 158–172 (2020)

    Article  Google Scholar 

  3. A. Subrahmannian, S.K. Behera, Chipless rfid: a unique technology for mankind. IEEE J. Radio Freq. Identif. (2022). https://doi.org/10.1109/JRFID.2022.3146902

    Article  Google Scholar 

  4. I.J. Goodfellow, Y. Bengio, A. Courville, Deep learning (MIT Press, Cambridge, 2016)

  5. M. Vazquez, Magnetic nano- and microwires design, synthesis, properties and applications (Elsevier, Amsterdam, 2015). https://www.elsevier.com/books/magnetic-nano-and-microwires/vazquez/978-0-08-100164-6

  6. M. Mohri, A. Rostamizadeh, A. Talwalkar, Foundations of machine learning (The MIT Press, Cambridge, 2012)

    Google Scholar 

  7. T.M. Cover, J.A. Thomas, Elements of information theory (Wiley series in telecommunications and signal processing) (Wiley-Interscience, Hoboken, 2006)

    Google Scholar 

  8. V.V. Popov, V.N. Berzhansky, H.V. Gomonay, F.X. Qin, Stress-induced magnetic hysteresis in amorphous microwires probed by microwave giant magnetoimpedance measurements. J. Appl. Phys. 113(117), 17A326 (2013)

    Article  Google Scholar 

  9. D. Makhnovskiy, A. Zhukov, V. Zhukova, J. Gonzalez, Tunable and self-sensing microwave composite materials incorporating ferromagnetic microwires. Adv. Sci. Technol. 54, 201–210 (2008)

    Article  CAS  Google Scholar 

  10. D. Archilla, A. Hernando, E. Navarro, Boosting the tunable microwave scattering signature of sensing array platforms consisting of amorphous ferromagnetic Fe\(_{2.25}\)Co\(_{72.75}\)Si\(_{10}\)B\(_{15}\) microwires and its amplification by intercalating Cu microwires. Nanomaterials 11, 1–16 (2021)

    Article  Google Scholar 

  11. A. Uddin, D. Estevez, F.X. Qin, From functional units to material design: a review on recent advancement of programmable microwire metacomposites. Composites A 153, 106734 (2022)

    Article  CAS  Google Scholar 

  12. G.B. Goh, N.O. Hodas, A. Vishnu, Deep learning for computational chemistry. J. Comput. Chem. 38(16), 1291–1307 (2017)

    Article  CAS  Google Scholar 

  13. Y. Kim, Y. Kim, C. Yang, K. Park, G.X. Gu, S. Ryu, Deep learning framework for material design space exploration using active transfer learning and data augmentation. NPJ Comput. Math. 7, 140 (2021)

    Article  Google Scholar 

  14. M.L. Pasini, P. Zhang, S.T. Reeve, J.Y. Choi, Multi-task graph neural networks for simultaneous prediction of global and atomic properties in ferromagnetic systems. Mach. Learn.: Sci. Technol. 3(2), 025007 (2022)

    Google Scholar 

  15. H. Kim, Y. Jiang, R. Rana, S. Kannan, S. Oh, P. Viswanath, Communication algorithms via deep learning (2018). arXiv preprint arXiv:1805.09317

  16. H. Kim, Y. Jiang, S. Kannan, S. Oh, P. Viswanath, Deepcode: feedback codes via deep learning. IEEE J. Sel. Areas Inf. Theory 1(1), 194–206 (2020)

    Article  Google Scholar 

  17. R. Sundaram, A. Varma, Dispersive Autoassociative Neural Networks with Inversion (DANNI) for generating constrained codes. Northeastern technical report (2022)

  18. H. Wiesner, J. Schneider, Magnetic properties of amorphous Fe-P alloys containing Ga, Ge, and As. Phys. Status Solidi (a) 26(1), 267 (1974)

    Article  Google Scholar 

  19. J. Schneider, H. Wiesner, R. Gemperle, Annealing effects on the magnetic properties of rapidly quenched transition metal alloys. Phys. Status Solidi (a) 36(1), 59–64 (1976)

    Article  Google Scholar 

  20. R. Gemperle, L. Kraus, J. Schneider, Magnetization reversal in amorphous (Fe1- xNix) 80P10B10 microwires. Czechoslov. J. Phys. B 28(10), 1138–1145 (1978)

    Article  Google Scholar 

  21. M. Vazquez, Advanced magnetic microwires. Handb. Magn. Adv. Magn. Mater. (2007). https://doi.org/10.1002/9780470022184.hmm418

    Article  Google Scholar 

  22. P. Marín, M. Marcos, A. Hernando, High magnetomechanical coupling on magnetic microwire for sensors with biological applications. Appl. Phys. Lett. 96(26), 262512 (2010)

    Article  Google Scholar 

  23. C. Herrero-Gómez, P. Marín, A. Hernando, Bias free magnetomechanical coupling on magnetic microwires for sensing applications. Appl. Phys. Lett. 103(14), 142414 (2013)

    Article  Google Scholar 

  24. A. Hernando, V. Lopez-Dominguez, E. Ricciardi, K. Osiak, P. Marin, Tuned scattering of electromagnetic waves by a finite length ferromagnetic microwire. IEEE Trans. Antennas Propag. 64(3), 1112–1115 (2015)

    Article  Google Scholar 

  25. C.M. Bishop, Neural networks for pattern recognition (Oxford University Press, Oxford, 1995)

    Google Scholar 

  26. K. Fukushima, Cognitron: a self-organizing multilayered neural network. Biol. Cybern. 20(3), 121–136 (1975)

    Article  CAS  Google Scholar 

  27. V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann machines, in Proceedings of the 27th international conference on machine learning. (Omnipress, Haifa, 2010), pp.807–814

  28. S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift, in International conference on machine learning. (PMLR, 2015), pp. 448–456

  29. D.P. Kingma, J. Ba, Adam: a method for stochastic optimization (2014). arXiv preprint arXiv:1412.6980

  30. M. Arashi, A.M.E. Saleh, B.G. Kibria, Theory of ridge regression estimation with applications (Wiley, New York, 2019)

    Google Scholar 

  31. Wikipedia, List of datasets for machine-learning research. Wikipedia (2022). https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research

Download references

Funding

This study was funded by Northeastern University, NSF D-ISN 2039945, Fulbright España, I-Link A20074 (CSIC), Spanish Ministry of Science and Innovation RTI2018-095856-B-C21 and Comunidad de Madrid NANOMAGCOST S2018/NMT-4321.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshar Varma.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varma, A., Zhang, X., Lejeune, B. et al. Toward remote and secure authentication: Disambiguation of magnetic microwire signatures using neural networks. MRS Communications 13, 16–20 (2023). https://doi.org/10.1557/s43579-022-00302-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-022-00302-5

Keywords

Navigation