Skip to main content
Log in

Analysis of quantum effects in metal oxide semiconductor field effect transistor in fractal dimensions

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

The MOSFET is a semiconductor microelectronic single-chip used in different technical aspects in computer engineering and nanotechnology. However, there are many self-assembly micro- and nano-electronic processes generating fractal patterns where millions of metallic nanoparticles are self-assembled into fractal electronic circuits. This proves the importance of fractals in nano-devices such as MOSFET. In this letter, we study quantum effects on MOSFET in fractal dimensions based on the concept of "product-like fractal measure" introduced recently in literature by Li and Ostoja-Starzewski. This study shows that fractal quantum mechanical effects occurring in micro- and nanoelectronics deserve to be considered seriously.

Graphical abstract

Variations of the electric potential for different values of fractal dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The authors confirm the absence of sharing data.

Notes

  1. M. Ven, Science and Technology Communication, https://www.zerotoasiccourse.com/matt_venn/.

  2. https://wolles-elektronikkiste.de/en/about-me-and-the-blog.

References

  1. Yu.F. Ogrin, V.N. Lutskii, M.I. Elinson, Observation of quantum size effects in thin Bismuth films. Zh. Eksp. Teor. Fiz. Pis. Red. 3, 114 (1996)

    Google Scholar 

  2. M.A. Rizakhanov, M.A. Magomedov, A.M. Kurbanova, Electric properties of semiconductor CdS studied by absorption spectroscopy. Inorganic Mat. 53, 35–38 (2017)

    Article  CAS  Google Scholar 

  3. F.F. Batista Jr., A. Chaves, D.R. de Costa, G.A. Farias, Curvature effects on the electronic and transport properties of semiconductor films. Phys. E: Low-Dim. Syst. Nanostruct. 99, 304–309 (2018)

    Article  CAS  Google Scholar 

  4. A.A. Shanenko, M.D. Croitoru, F.M. Peeters, Nanoscale superconductivity: nanowires and nanofilms. Phys. C: Supercond. Appl. 468, 593–598 (2008)

    Article  CAS  Google Scholar 

  5. N. Piovella, R. Bonifacio, Inhomogeneous effects in the quantum free electron laser. Nucl. Inst. Meth. Phys. A: Accel. Spectr. Detect. Assoc. Equip. 560, 240–244 (2006)

    Article  CAS  Google Scholar 

  6. I.M.E. Butler, W. Li, S.A. Sobhani, N. Babazadeh, I.M. Ross, K. Nishi, K. Takemasa, M. Sugawara, D.T.D. Childs, R.A. Hogg, Size anisotropy inhomogeneity effects in state-of-the-art quantum dot lasers. Appl. Phys. Lett. 113, 012015 (2018)

    Article  Google Scholar 

  7. L.A. Matveeva, E.F. Venger, EYu. Kolyadina, P.L. Neluba, Quantum-size effects in semiconductor heterostructures. Semiconduct. Phys. Quant. Elect. Optoelect. 20, 224–230 (2017)

    Article  CAS  Google Scholar 

  8. S.H. Kim, M.T. Man, J.W. Lee, K.D. Park, H.S. Lee, Influence of size and shape anisotropy on optical properties of CdSe quantum dots. Nanomat. 10, 1589 (2020)

    Article  CAS  Google Scholar 

  9. D.K. Ferry, R. Akis, D. Vasileska, Quantum effects in MOSFETs: use of an effective potential in 3D Monte Carlo simulation of ultra-short channel devices, in International electron devices meeting 2000. (IEEE, 2000)

    Google Scholar 

  10. H. Abebe, E. Cumberbatch, Quantum mechanical effects correction models for inversion charge and current-voltage (IV) characteristics of the MOSFET device, in Proceedings 2003 nanotechnology conference. (University of Southern California, San Francisco, 2003), pp.218–221

    Google Scholar 

  11. E. Cumberbatch, S. Uno, H. Abebe, Nano-scale MOSFET device modelling with quantum mechanical effects. Eur. J. Appl. Math. 17, 465–489 (2006)

    Article  CAS  Google Scholar 

  12. R.A. El-Nabulsi, Dirac equation with position-dependent mass and Coulomb-like field in Hausdorff dimension. Few Body Syst. 61, 10 (2020)

    Article  Google Scholar 

  13. R.A. El-Nabuls, Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal. J. Stat. Phys. 172, 1617–1640 (2018)

    Article  Google Scholar 

  14. R.A. El-Nabulsi, Emergence of quasiperiodic quantum wave functions in Hausdorff dimensional crystals and improved intrinsic Carrier concentrations. J. Phys. Chem. Sol. 127, 224–230 (2019)

    Article  CAS  Google Scholar 

  15. R.A. El-Nabulsi, On a new fractional uncertainty relation and its implications in quantum mechanics and molecular physics. Proc. Roy. Soc. A476, 20190729 (2020)

    Article  Google Scholar 

  16. V.A. Moshnikov, A.I. Maksimov, O.A. Aleksandrova, I.A. Pronin, A.A. Karmanov, E.I. Terukov, N.D. Yakushova, I.A. Averin, A.A. Bobkov, N.V. Permyakov, Nanolithographic self-assembly of colloidal nanoparticles. Tech. Phys. Lett. 42, 967–969 (2016)

    Article  CAS  Google Scholar 

  17. Z. Huo, L. Mao, M. Xu, C. Tan, Low frequency current noise in 2.5 nm MOSFET and fractal dimension of soft breakdown. Sol. State Elect. 47, 1451–1456 (2003)

    Article  CAS  Google Scholar 

  18. R.D.S. Yadava, Searching a fractal basis for low-frequency 1/f fluctuations-MOSFET structure in case. Jpn. J. Appl. Phys. 28, 929 (1989)

    Article  Google Scholar 

  19. C.S. Nutu, T. Axinte, Microelectronics and nanotechnology, and the fractal-like structure of information, knowledge, and science. Adv Topics Optoelectron Microelectron and Nanotechnol. 10010, 1001011 (2016)

    Google Scholar 

  20. R.A. El-Nabulsi, W. Anukool, Some new aspects of fractal superconductivity. Phys. B: Phys. Cond. Mat. 646, 414331 (2022)

    Article  CAS  Google Scholar 

  21. J. Li, M. Ostoja-Starzewski, Fractal solids, product measures and fractional wave equations. Proc. Roy. Soc. A465, 2521–2536 (2009)

    Article  Google Scholar 

  22. J. Li, M. Ostoja-Starzewski, Thermo-poromechanics of fractal media. Phil. Trans. Roy. Soc. A378, 20190288 (2020)

    Article  Google Scholar 

  23. R.A. El-Nabulsi, W. Anukool, Modeling of combustion and turbulent jet diffusion flames in fractal dimensions. Cont. Mech. Therm. 34, 1219–1235 (2022)

    Article  CAS  Google Scholar 

  24. R.A. El-Nabulsi, W. Anukool, Fractal MHD wind in the solar atmosphere. Adv. Space Res. 69, 3525–3539 (2022)

    Article  Google Scholar 

  25. R.A. El-Nabulsi, W. Anukool, Fractal nonlocal thermoelasticity of thin elastic nanobeam with apparent negative thermal conductivity. J. Therm. Stresses 45, 303–318 (2022)

    Article  Google Scholar 

  26. N. Goldsman, C. Darmody, Semiconductor and device physics: a concise introduction (University of Maryland, College Park, 2021)

    Google Scholar 

  27. L. Wang, Quantum mechanical aspects on MOSFET scaling limit (Georgia Institute of Technology, 2006)

    Google Scholar 

  28. R. Santana-Carrillo, J.S. González-Flores, E. Magaña-Espinal, L.F. Quezada, G.H. Sun, S.H. Dong, Entropy 24, 1516 (2022)

    Article  Google Scholar 

  29. M. Solaimani, S.H. Dong, Quantum information entropies of multiple quantum well systems in fractional Schrödinger equations. Int. J. Quan. Chem. 120, e26113 (2020)

    Article  CAS  Google Scholar 

  30. S.A. Hareland, M. Manassian, W.K. Shih, S. Jallepalli, H. Wang, G.L. Chindalore, A. Tasch, C.M. Maziar, Computationally efficient models for quantization effects in MOS electron and hole accumulation layers. IEEE Trans. Elec. Dev. 45, 1487–1493 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referees for useful comments and valuable suggestions.

Funding

The authors would like to thank Chiang Mai University for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad El-Nabulsi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nabulsi, R.A., Anukool, W. Analysis of quantum effects in metal oxide semiconductor field effect transistor in fractal dimensions. MRS Communications 13, 233–239 (2023). https://doi.org/10.1557/s43579-023-00334-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00334-5

Keywords

Navigation