Skip to main content
Log in

Synthesis and characterization of cesium lead bromide perovskite quantum dots with photovoltaic applications

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

This work analyzed perovskite quantum dots, in this case, CsPbBr3 PQDs. The morphological and structural characterization shows three PQDs crystalline phases with an average particle size of 14 nm. On the other hand, the optical results show PQDs absorption at 487 nm, and PL is centered at 501 nm with excitation at 405 nm, indicating potential properties for photovoltaic and optoelectronic devices. The solar cell was fabricated and studied: FTO/c-TiO2/m-TiO2/PQDs/spiro-OMeTAD/Al. The JV curves suggested that the photocurrent was 0.196 mA cm−2 with FF and Voc values of 24.5% and 0.72 V, respectively. A solar cell was obtained at ambient conditions with future optimization to make it more efficient.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are not publicly available due to the information is extremely a lot, but are available from the corresponding author on reasonable request.

References

  1. L. Ahmad, N. Khordehgah, J. Malinauskaite, H. Jouhara, Recent advances and applications of solar photovoltaics and thermal technologies. Energy (2020). https://doi.org/10.1016/j.energy.2020.118254

    Article  Google Scholar 

  2. A. Dey et al., State of the art and prospects for halide perovskite nanocrystals. ACS Nano 15(7), 10775–10981 (2021). https://doi.org/10.1021/acsnano.0c08903

    Article  CAS  Google Scholar 

  3. The National Renewable Energy Laboratory (NREL), Best Research-Cell Efficiency Chart, (2022).

  4. B. Weber, R. Magaña-López, I.G. Martínez Cienfuegos, M.D. Durán-García, E.A. Stadlbauer, Current status of photovoltaic plants in Mexico: An analysis based on online monitoring. Energy for Sustain. Dev. 57, 48–56 (2020). https://doi.org/10.1016/j.esd.2020.05.003

    Article  Google Scholar 

  5. C. Rosiles-Perez, S. Sidhik, L. Ixtilico-Cortés, F. Robles-Montes, T. López-Luke, A.E. Jiménez-González, High short-circuit current density in a non-toxic Bi2S3 quantum dot sensitized solar cell. Mater. Today Energy (2021). https://doi.org/10.1016/j.mtener.2021.100783

    Article  Google Scholar 

  6. Y. Zhang et al., A ‘tips and Tricks’ practical guide to the synthesis of metal halide perovskite nanocrystals. Chem. Mater. 32(13), 5410–5423 (2020). https://doi.org/10.1021/acs.chemmater.0c01735

    Article  CAS  Google Scholar 

  7. H. Zhao, F. Rosei, Colloidal quantum dots for solar technologies. Chemistry 3(2), 229–258 (2017). https://doi.org/10.1016/j.chempr.2017.07.007

    Article  CAS  Google Scholar 

  8. L. Protesescu et al., Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15(6), 3692–3696 (2015). https://doi.org/10.1021/nl5048779

    Article  CAS  Google Scholar 

  9. H. Wu, J. Pi, D. Zhou, Q. Wang, Z. Long, J. Qiu, Effect of cation vacancy on lattice and luminescence properties in CsPbBr 3 quantum dots. Ceram Int 48(3), 3383–3389 (2022). https://doi.org/10.1016/j.ceramint.2021.10.114

    Article  CAS  Google Scholar 

  10. T. Ma, S. Wang, Y. Zhang, K. Zhang, L. Yi, The development of all-inorganic CsPbX3 perovskite solar cells. J. Mater. Sci. 55(2), 464–479 (2020). https://doi.org/10.1007/s10853-019-03974-y

    Article  CAS  Google Scholar 

  11. D. Ghosh, M.Y. Ali, D.K. Chaudhary, S. Bhattacharyya, Dependence of halide composition on the stability of highly efficient all-inorganic cesium lead halide perovskite quantum dot solar cells. Sol. Energy Mater. Sol. Cells 185, 28–35 (2018). https://doi.org/10.1016/j.solmat.2018.05.002

    Article  CAS  Google Scholar 

  12. M.P. Montoya et al., Study of inverted planar CH3NH3PbI3 perovskite solar cells fabricated under environmental conditions. Sol. Energy 180, 594–600 (2019). https://doi.org/10.1016/j.solener.2019.01.061

    Article  CAS  Google Scholar 

  13. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r

    Article  CAS  Google Scholar 

  14. A. Herez, H. el Hage, T. Lemenand, M. Ramadan, M. Khaled, Review on photovoltaic/thermal hybrid solar collectors: Classifications, applications and new systems. Sol. Energy 207, 1321–1347 (2020). https://doi.org/10.1016/j.solener.2020.07.062

    Article  Google Scholar 

  15. M. Shekhirev, J. Goza, J.D. Teeter, A. Lipatov, A. Sinitskii, Synthesis of cesium lead halide perovskite quantum dots. J. Chem. Educ. 94(8), 1150–1156 (2017). https://doi.org/10.1021/acs.jchemed.7b00144

    Article  CAS  Google Scholar 

  16. S. Panigrahi, S. Jana, T. Calmeiro, D. Nunes, R. Martins, E. Fortunato, Imaging the anomalous charge distribution inside CsPbBr 3 perovskite quantum dots sensitized solar cells. ACS Nano 11(10), 10214–10221 (2017). https://doi.org/10.1021/acsnano.7b04762

    Article  CAS  Google Scholar 

  17. J. Chen, D. Liu, M.J. Al-Marri, L. Nuuttila, H. Lehtivuori, K. Zheng, Photo-stability of CsPbBr 3 perovskite quantum dots for optoelectronic application. Sci China Mater 59(9), 719–727 (2016). https://doi.org/10.1007/s40843-016-5123-1

    Article  CAS  Google Scholar 

  18. H. Yu et al., Green light-emitting devices based on perovskite CsPbBr 3 quantum dots. Front Chem (2018). https://doi.org/10.3389/fchem.2018.00381

    Article  Google Scholar 

  19. F. Xu et al., Quantum size effect and surface defect passivation in size-controlled CsPbBr 3 quantum dots. J Alloys Compd (2020). https://doi.org/10.1016/j.jallcom.2020.154834

    Article  Google Scholar 

  20. A. Swarnkar, R. Chulliyil, V.K. Ravi, M. Irfanullah, A. Chowdhury, A. Nag, Colloidal CsPbBr 3 perovskite nanocrystals: Luminescence beyond traditional quantum dots. Angew. Chem. Int. Edn. 54(51), 15424–15428 (2015). https://doi.org/10.1002/anie.201508276

    Article  CAS  Google Scholar 

  21. H. Chen, A. Guo, J. Zhu, L. Cheng, Q. Wang, Tunable photoluminescence of CsPbBr 3 perovskite quantum dots for their physical research. Appl. Surf. Sci. 465, 656–664 (2019). https://doi.org/10.1016/j.apsusc.2018.08.211

    Article  CAS  Google Scholar 

  22. J. Chaudhary, R. Gautam, S. Choudhary, A.S. Verma, Inverted-heterostructure based device of CH3NH3PbBr 3for Schottky photodiode. EPJ Appl. Phys. (2019). https://doi.org/10.1051/epjap/2019190023

    Article  Google Scholar 

  23. D. Kumar, J. Chaudhary, S. Kumar, S.R. Bhardwaj, M. Yusuf, A.S. Verma, Investigation of methylammonium lead bromide hybrid perovskite based photoactive material for the photovoltaic applications. Digest J. Mater. Nanostr. 16, 205–215 (2021)

    Google Scholar 

  24. B. Li et al., Pathways toward high-performance inorganic perovskite solar cells: Challenges and strategies. J. Mater. Chem. A 7(36), 20494–20518 (2019). https://doi.org/10.1039/c9ta04114a

    Article  CAS  Google Scholar 

  25. A. Agrawal, S. Ahmed Siddiqui, A. Soni, G. D. Sharma, Device Modeling and Characteristics of Solution Processed Perovskite Solar Cell at Ambient Conditions, 2020. http://www.springer.com/series/7818

  26. X. Zhang et al., α-CsPbBr 3 perovskite quantum dots for application in semitransparent photovoltaics. ACS Appl. Mater. Interfaces 12(24), 27307–27315 (2020). https://doi.org/10.1021/acsami.0c07667

    Article  CAS  Google Scholar 

  27. S. Sidhik, C. Rosiles Pérez, M.A. Serrano Estrada, T. López-Luke, A. Torres, E. de la Rosa, Improving the stability of perovskite solar cells under harsh environmental conditions. Sol. Energy 202, 438–445 (2020). https://doi.org/10.1016/j.solener.2020.03.034

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ph.D. Scholarship from 2020-CONACYT, 2019 UC MEXUS-CONACYT Collaborative grants, Program Postdoctoral Stays for Mexico 2021-CONACYT, Instituto de Investigación en Metalurgia y Materiales from Universidad Michoacana de San Nicolás de Hidalgo, and CIC-UMSNH 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. López-Luke.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Ferreira, H.O., Aguilar, M.S., Zarazúa, I. et al. Synthesis and characterization of cesium lead bromide perovskite quantum dots with photovoltaic applications. MRS Advances 7, 1175–1179 (2022). https://doi.org/10.1557/s43580-022-00386-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00386-0

Navigation