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The SRIF was developed in 1969 for use in JPL's Mariner
Abstract— Solving the SLAM problem is one way to enable 10 missions to Venus (as recounted by [10]), following the
a robot to explore, map, and navigate in a previously unknown development ofcovariance square root filters earlier that
environment. We investigate smoothing approaches as a viable gecade. The use of square roots of either the covariance or

alternative to extended Kalman filter-based solutions to the . . . .
problem. In particular, we look at approaches that factorize either information matrix results in more accurate and stable algo-

the associated information matrix or the measurement matrix fthms, and, quoting Maybeck [11] “a number of practitioners
into square root form. Such techniques have several significant have argued, with considerable logic, that square root filters
advantages over the EKF: they are faster yet exact, they can be shouldalwaysbe adopted in preference to the standard Kalman
used in either batch or incremental mode, are better equipped fjlter recursion”. Maybeck briefly discusses the SRIF in a

to deal with non-linear process and measurement models, and . .
yield the entire robot trajectory, at lower cost. In addition, chapter on square root filtering, and it and other square root

in an indirect but dramatic way, column ordering heuristics {YP€ algorithms are the subject of a book by Bierman [10].

automatically exploit the locality inherent in the geographic However, as far as this can be judged by the small number

nature of the SLAM problem. of references in the literature, the SRIF and the square root
In this paper we present the theory underlying these methods, information smoother(SRIS) are not often used.

an interpretation of factorization in terms of the graphical model In thi . tioate th f factorizi ith
associated with the SLAM problem, and simulation results that n, IS paPer we '_nves Igate the use or 1ac O”Z_'”Q eftner
underscore the potential of these methods for use in practice.  the information matrixZ or the measurement matrit into
square root form, as applied to the problem of simultaneous
I. INTRODUCTION . .

. o ~smoothing and mappin¢SAM). Because they are based on
The problem of simultaneous localization and mappingatrix square roots, we will refer to this family of approaches

(SLAM) [1]-[3] has received considerable attention in mobilgs square root SAMor +/SAM for short. They have several
robotics as it is one way to enable a robot to explore, map, ag@nificant advantages over the EKF:

navigate in. previou_sly unknqwn environments. The traditional . They are much faster than EKF-based SLAM
approach in the Il'Ferature is to' phrase the problem as an, They are exact, rather than approximate
extended Kalman filter (_EKF_), with the robot pose ar_ld static | They can be used in either batch or incremental mode
landmarks as the evolvmg filter state [2], [4], [5]. 1tis well - If desired, they yield thentire smoothed robot trajectory
known_ that the cor_nputa’qonal requirements of the EKF be-. They are much better equipped to deal with non-linear
come |mpract|cal fairly quickly, once the number of landmarks process and measurement models than the EKF
in the environment grows beyond a few hundred. As a resqlt,. When using QR, they are more accurate and stable
many _authorg have looked a tways to redu_ce the computation They automatically exploit locality in the the way that
associated W'th ! he EKF, using both approximating [6]-{8] and sub-map [6] or compressed filter [9] SLAM variants do
non-approximating [9] algorithms. X :
In this paper we propose thatquare root information HOwever, there is also a price to pay:
smoothing(SRIS) is a fundamentally better approach to the « Because we smooth the entire trajectory, computational
problem of SLAM than the EKF, based on the realization that, complexity grows without bound over time, for both
« in contrast to the extended Kalman filter covariance or Cholesky and QR factorization strategies. In many typical

information matrix, whichboth become fully dense over mapping scenarios, however, the EKF information matrix

time [7], [8], the information matrixZ associated with will grow much faster.

smoothingis and stays sparse; « As with all information matrix approaches, it is expensive
e in typical mapping scenarios this matrik or, alter- to recover the covariance matrix governing the unknowns.

natively, the measurement matriA, are much more We also present an interpretation of the resulting algorithms
compact representations of the map covariance structumeterms of graphical models, following [8], [12]-[14]. Doing
o T or A, both sparse, can be factorized efficiently usingo yields considerable insight into the workings of otherwise
sparse Cholesky or QR factorization, respectively, yieldpaque “black box” algorithms such as Cholesky or QR
ing a square root information matrik that immediately factorization. It exposes their kinship with recently devel-
yields the optimal robot trajectory and map; oped inference methods for graphical models [15], such as
Factoring the information matrix is known in the sequential ethe junction tree algorithm. In particular, in Section Il we
timation literature as square root information filtering (SRIFjntroduce the SLAM problem in terms of a directed graph



the state of the robot at th&* time step byz;, with i € 0..M,

a landmark byl;, with j € 1..N, and a measurement by,
with k& € 1..K. The joint probability model corresponding to
this network is

P(X,M,Z) =
M K
P(zo) [ [ P(@ilwiz1,w) x [ Plzsli 1) (1)
i=1 k=1

where P(xz¢) is a prior on the initial state of the robot,

P(z;|z;—1,u;) is themotion modelparameterized by a control
input u;, and P(z|z,!1) is thelandmark measurement model
The above assumes a uniform prior over the landmarks

Furthermore, it assumes that the data-association problem has

been solved, i.e., that the indicés and j;, corresponding to

Fig. 1. A synthetic environment with 20 landmarks in which we simulate@a-Ch measuremenf, are known.

a robot taking 156 bearing and range measurements along a trajectory of 2As is standard in the SLAM literature [2], [4], [5], we as-

poses. Also shown are the mean and covariance matrices as estimated by fghe Gaussian process and measurement models [11] defined
EKF. Note the effects of process and measurement noise. by '

x; = fi(zim1,wi) +w; 2

@ a Q @ where f;(.) is a process model, angd; is normally distributed

zero-mean process hoise with covariance matrixand

oNoNoNoNA T — N
where hy(.) is a measurement equation, and is normally
distributed zero-mean measurement noise with covariance

g The equations above model the robot's behavior in response
to control input, and its sensors, respectively.

For the prior P(x(), we will assume that, is givenand
Fig. 2.  Bayesian belief network representation of the SLAM problenh_ence_ it is treated _as a _ConStam below. ThIS considerably
The statez of the robot is governed by a Markov chain, on top, and th&implifies the equations in the rest of this document. In
environment of the robot is represented at the bottom by a set of landmag@dition. this is what is often done in practice: the origin of
. The measurements, in the middle layer, are governed both by the stat%h ,d . bi d hen i I
of the robot and the parameters of the landmark measured. _ e coordinate _SYStem IS ar mgry, an We.can t _en Justas we
fix 2o at the origin. The exposition below is easily adapted to
the case where this assumption is invalid.
or belief net. However, to understand factorization, the view Below we also need the first-order linearized version of the
of smoothing in terms of anndirectedMarkov random field process model (2), given by
(MRF), introduced in Section V, is more appropriay
exploiting the SLAM-specific graph structure, we are able
to immediately speed up factorization by a factor ofVize whereF;‘1 is the Jacobian of;(.) at the linearization point
believe that even more efficient algorithms can be developefl |, defined by
by viewing the problem as one of computation on a graph.

1’? + 51’1 = fi(l'?il,ui) + Fiiil(sl'i,l + w; (4)

pi-1 A 0filmioy, wi)

II. SLAM BACKGROUND O0x;_1

o e e o R e (a1, 15 gien and appers 2 a consiant dbove. The

o : ! fhearized measurement equations are obtained similarly,
1. Below we assume familiarity with EKF-based approaches
to SLAM [2], [4], [5]. In this section we introduce the SLAM 2e = hi(ad, 10) + Hi¥oxs, + JI*ol, + vy (5)
problem and the notation we use, but we do not re-derive the

extended Kalman filter. Rather, in Section Il we immediateljyynere H;" and Ji* are respectively the Jacobians if(.)

take a smoothing approach, in which both the map and tAéh respect to a change im; and/;,, and are evaluated at

robot trajectory are recovered. the linearization pointz?, , I7, ):
Following the trend set by FastSLAM an'd others [12], we i A Oy, 1) i A Oy, 1)
formulate the problem by referring to a belief net representdl;” = — 5 = =
Uk Jk

tion. The model we adopt is shown in Figure 2. Here we denote (@315, (@315,



IIl. SMOOTHING SLAM AND LEAST SQUARES

We investigate smoothing rather than filtering, i.e., we are O, ' 0. ]
interested in recovering the maximum a posteriori (MAP) 20
estimate for theentire trajectory X 2 {z;} and the map 50l J
L £ {I;}, given the measurements 2 {z,} and control 5_ P o
inputsU 2 {u;}. Let us collect all unknowns iX and L in 60
the vectord 2 (X, L). Under the assumptions made above, | ! ")
we obtain the MAP estimate
6* £ argmax P(X,L|Z) = argmax P(X,L,Z) 150~ 3 - s = el
0 0 g nz = 2102
= argmin —log P(X,L,Z) : s
0 200§ . .
by solving the following non-linear least-squares problem:
f 20
M ) K ) 250 f”f T
S llwi = filwimn, w3, + Y ek — hal@i )15, (6) . 40
i=1 k=1 | P
5 A Tl o 300 - . 60
Here |le||5; = ¢’ e is the squared Mahalanobis distance.
In practice one always considers a linearized version o - 80
this problem. If the process model and measurement  3s0| e 100

equationsh are non-linear and a good linearization point , | 0 50 100
is not available, non-linear optimization methods such as 0 50 100 nz = 2847

Gauss-Newton iterations or Levenberg-Marquardt will solve
succession of linear approximations to (6) in order to approach
the minimum [16]. This is similar to the extended Kalmamig. 3. Measurement matrixi associated with the problem in Figure 1,

filter approach to SLAM as pioneered by [4], [17], [18], buklong with the information matri€ 2 A7 A, and its Cholesky triangle?.
allows for iterating muItipIe times to convergence. Here the state is 3D and both landmarks and measurements are 2D, hence the

, . . size of A is (2 156 x 2) x (2 20 x 2) = 372 x 100.
In what follows, we will assume that either a good linS28 04 18 (20 3+ 156 > 2) x (20 x 8420 x 2) = 372 x 100

earization point is available or that we are working on one
of these iterations. In either case, we havdinear least- Finallv. after collecting the Jacobian matri into a matrix
squares problem that needs to be solved efficiently. Using tge ally, after coflecting the Jacobian matrices Into a ma

. : 7 A, and the vectors; andcy, into a right-hand side (RHS) vec-
I t Is (4 : ) ’ i
inearized process and measurement models (4) and (5) tor b, we obtain the following standard least-squares problem,

M

. . . * : 2
0" =argmin > | F{ " wioy + Gl — ai F, 0" = argmin | A6 — bl|; (8)
N
K 4 _ ) which is our starting point belowd can grow to be very large,
1k . . . .
+ Z |Hyf iy + T, —clls,  (7) but is quite sparse, as shown in Figure 34Jf, d;, andd,
k=1 are the dimensions of the state, landmarks, and measurements,

A’s size is(Nd, + Kd.) x (Nd, + Md;). In addition,A has a

. A A
where we definez; = 29 — f;(2%_,,u;) and ¢, = — i i
i = filaiog, ) Ck “k typical block structure, e.g., withf = 3, N = 2, andK = 4:

0 10 . . . :
hi(z7, .15, ). To avoid treatingr; in a special way we also

introduce the matribxG = —1I,.4 , with d the dimension of [ Gl T
the robot state, and we drop thenotation as implied. Fl G2
Below we assume, without loss of generality, that the F2 G3
covariance matriced; and X, are all unity. Because of A= H} Ji
A _ _ _ _ 2 Hj J?
lelg & e7s e = (27 T/2e)T (27 T/2e) = |22 | Joe 7
Hj Ji

with ©~1/2 the matrix square root ok, we can always - -
eliminateA; from (7) by pre-multiplyingZ; ", G¢, anda; in  Above the top half describes the robot motion, and the
each term withAi_T/Q. A similar story holds for the matrices bottom half the measurements. A mixture of landmarks and/or
Yk, wherefor scalar measurements this simply means dividingeasurements of different types (and dimensions) is easily
each term by the measurement standard deviat8elow we accommodated. Note that the non-zero blocks pattern of
assume that this has been done and drop the Mahalanobis nthren measurement part is also the adjacency matrix for the

in favor of the regular 2-norm. measurement part of a belief net like the one in Figure 2.



IV. CHOLESKY AND QR FACTORIZATION via back-substitution. The cost of QR LS is dominated by the

In this section we briefly review Cholesky and QR facS0St Of the Householder reflections, which2isn — n/3)n.
torization and their application to the full rank linear least- ComParing QR with Cho2lesky factorization, we see that
squares (LS) problem in (8). The exposition closely follow@0th algorithms require (imn*) operations whem: > n, but

[19], which can be consulted for a more in-depth treatmentt.hat QR-factorization is a factor of 2 slower. However, this is
Fé)r a full-rankm x n matrix A, with m > n, the unique LS only for densematrices: if A is sparse as is the case in the

solution to (8) can be found by solving thermal equations SLAM problem, QR factorization becomes quite competitive.

AT A9* = ATh ©) V. A GRAPHICAL MODEL PERSPECTIVE

o o Cholesky or QR factorization are most often used as “black
This is normally done by Cholesky factorization of tméor- oy algorithms, but in fact they are surprisingly similar
mation matrixZ, defined and factorized as follows: to much more recently developed methods for inference in

T2 ATA— RTR (10) graphical modelg [15]. Taking a graphical model view on
SLAM exposes its sparse structure in full, and shows how
The Cholesky triangleR is an upper-triangulan x n matrixt  sparse factorization methods in this context operate on a graph.
and is computed usinGholesky factorizatiora variant of LU When examining the correlation structure of the problem
factorization for symmetric positive definite matrices. It runi is better to eliminateZ and consider theindirectedgraph
in n3/3 flops. After this,6* can be found by solving that encodes the correlations between the unknaéwargy. In
i T T . [7], [8] this view is taken to expose the correlation structure
first B7y = A7b and thenRo™ = y inherent in thdiltering versionof SLAM. It is shown there that
by back-substitution. The entire algorithm, including computbevitably, when marginalizing out the past trajectdfy.,, 1,
ing half of the symmetricA” A, requires(m + n/3)n? flops. the |nfor.m§1t|on matrix becomes. completely dense. Hence, the

For the example of Figure 1, botli and its Cholesky emphasis in these approaches is to selectively remove links to
triangle R are shown alongside in Figure 3. Note the very reduce the computational cost of the filter, with great success.
typical block structure of when the columns ofl are ordered [N contrast, in this paper we consider the graph associated
in the canonical way, i.e., trajectoy first and then mag.:  With the smoothingnformation matrixZ = A” A, which does

AT A T notbecome dense, as past states are never marginalized out. In
7= %T X Aij particular, the objective function in Equation 6 corresponds to
XL LAL a pairwise Markov random field (MRF) [20], [21] through the
Here Zx, E A% AL encodes the correlation between robol{lammerslgy—Ch;ford éheorem [ZO]HTEe lno?jes mk the ';/ITFk
statesX and mapL, and the diagonal blocks are band-limited "' ¢>PON to the robot states and the landmarks, and links

An alternative to Cholesky factorization that is both mor(reepresent either odometry or landmark measurements. The

accurate and numerically stable is to proceed via Q esulting bipartite graph corresponding to the example of

factorization without computing the information matrix@ igure 1 is shown in Figure 4.
Instead, we compute the QR-factorization Afitself along Both QR and Cholesky factorizatialiminateone variable

with its corresponding RHS: at a time, starting withd,, corresponding in the leftmost
P 9 | column of eitherA or Z. The result of the elimination is
QTA— R QT — d that 6; is now expressed as a linear combination of all
10 e other unknownsf;~,, with the coefficients residing in the
corresponding rowR; of R. In the process, however, new
. ; dependencies are introduced between all variables connected
upper-triangular Cholesky triangle. The preferred method f?r .
. L 0 61, which causes edges to be added to the grapte next
factorizing a dense matrid is to computeR column by ! . X L . X
variable is then treated in a similar way, until all variables have

column, proceeding from left to right, using Householder reg_'aen eliminated. This is exactly the process of moralization

flections to zero out all non-zero elements below the diagonal: . . . o . )
o . and triangulation familiar from graphical model inference. The
The orthogonal matrix is not usually formed: instead, the L . .
result of eliminating all variables is a chordal graph, shown

T i
transformed RHS)* b is computed by appendirigas an extra for our example in Figure 4b,

column to A. Because th&) factor is orthogonal, we have: : . :
The single most important factor to good performance is
|40 — b||§ = HQTAQ — QTsz = ||RO — ng + HeHg the order in which variables are eliminateBifferent variable
orderings can yield dramatically more or lefiisin, defined
Clearly, ||e||§ will be the least-squares residual, and the L&s the amount of edges added into the graph. As each edge
solutiong* can be obtained by solving the square system added corresponds to a non-zero in the Cholesky triaRgle
RO — d (11) both the cost of computing and back-substitution is heavily
dependent on how much fill-in occurs. Unfortunately, finding

LSome treatments, including [19], define the Cholesky triangle as the low@0 OPtimal _Orderlng IS NP-CompIete_. Discovering algorithms
triangular matrixG = RT, but the other convention is more convenient herdhat approximate the optimal ordering is an active research

Here @ is an m x m orthogonal matrix, andR is the



@) (b) (c)

Fig. 4. a) The graph of the Markov random field of the associated SLAM problem from Figure 1. b) The triangulated graph: each edge corresponds to a non-
zero in the Cholesky triangl&. ¢) The corresponding elimination tree showing how the state and landmarks estimates will be computed via back-substitution:
the root is computed first - in this case a landmark near the top left - after which the computation progresses further down the tree.

area in linear algebra. A popular method for medium-sized We have also experimented with finding better, SLAM
problems iscolamd[22]. However as we will show in Section specific column re-orderings. A simple idea is to use a
VII, using domain knowledge can do even better. standard method such a®lamd but have it work on the

A data structure that underlies many of these approximagparsity pattern of the blocks instead of passing it the original
column ordering algorithms is thimination tree It is defined measurement matrid. This amounts to working directly with
as a depth-first spanning tree of the chordal graph afté¥e bipartite MRF graph from Section V, making accidental
elimination, and is useful in illustrating the flow of compuzeros due to the linearization invisible. Surprisingly, as we will
tation during the back-substitution phase. The elimination trebow, the symbolic factorization on this restricted graph yields
corresponding to our example, for a good column orderinggtter column orderings.
is shown in Figure 4c. The root of the tree corresponds to
the last variablef), to be eliminated, which is the first to Incrementaly/SAM
be computed in back-substitution (Equation 11). Computation;, 5 rohotic mapping context, an incremental version of the
then proceeds down the tree, and while this is typically dong,ye algorithm is of interest. It is well known that factoriza-
in reverse column order, variables in disjoint subtrees M@¥ns can be updated incrementally. One possibility is to use
be computed in any order. In fact, if one is only interestegl .o, 1 Cholesky update, a standard algorithm that computes
in certain variables, there is no need to compute any of ], tactor g/ corresponding to &’ = 7 + aa”, wherea”
subtree_s that do npt contain them. The eI|m|nat|<_)n tree is also, new row of the measurement matix However, these
the basis for multifrontal QR methods [23], which we havgqqrithms are typically implemented for dense matrices only,

also evaluated in our simulations below. and it is imperative that we use a sparse storage scheme for op-
timal performance. While sparse Cholesky updates exist, they
VI. SQUARE ROOT SAM are relatively complicated to implement. A second possibility,
Jeasy to implement and suited for sparse matrices, is to use a
cheries of Givens rotations (see [19]) to eliminate the non-zeros
in the new measurement rows one by one.
i . A third possibility, which we have adopted for the simu-
1) Build the measurement matrid and the RHSb @s |51ions below, is to update the matrik and simply use a
explained in Section Ill. » full Cholesky (or LDL) factorization. QR factorization is more
2) Find a good column ordering, anc; reorderd, <= A accurate and has better numerical properties, but a Cholesky
3) Solve 6; = argmin , |[A,0, —bl|, using either the o | p| factorization can be corrected with one linear update
Cholesky or QR_factorizatjon metpod frqm Section IVstep to achieve the same accuracy, if required.
4) Recover the optimal solution by < 6,, with r = p~* Because the entire measurement history is implicitZin
In tests we have obtained the best performance with spacs® does not need to factorize at every time-step. At any time
LDL factorization [24], a variant on Cholesky factorizatiorduring an experiment, however, the map and/or trajectory can
that compute = LDLT, with D a diagonal matrix and, be computed by a simple factorization and back-substitution,
a lower-triangular matrix with ones on the diagonal. e.g., for visualization and/or path planning purposes.

A batch-version ofsquare root information smoothing an
mappingis straightforward and a completely standard way
solving a large, sparse least-squares problem:



2) In MATLAB, the built-in Cholesky beats QR factoriza-
tion by a large factor.
3) Multifrontal QR factorization is better than MATLAB'’s

; ; QR, but still slower than either Cholesky or LDL.
|k . R ) 4) While this is not apparent from the table, using a good
o g : column ordering isnuchmore important than the choice

of factorization algorithm.

The latter opens up a considerable opportunity for original
research in the domain of SLAM, as we found that injecting
even a small amount of domain knowledge into that pro-
cess yields immediate benefits. To illustrate this, we show
simulation results for a length 1000 random walk in a 500-
landmark environment, corresponding to Figure 5. Bbtind

R are shown in Figure 7 for the canonical (and detrimental)
Fig. 5. A synthetic environment with 500 landmarks along with a 1000-steprdering with states and landmarks ordered consecutively. The
random walk trajectory, corresponding to 14000 measurements taken.  qramatic reduction in fill-in that occurs when using a good re-
ordering is illustrated by Figure 8, where we usethmd[22].
Finally, when we use the block-oriented ordering heuristic

M N none IdI chol miqr qr . c

200 180 0.031 0.062 0.092 0.868 1.685 from Section VI, the fill-in drops by another factor of 2.
500 0.034 0.062 0.094 1.19 1.256
1280 0.036 0.068 0.102 1.502 1.21 B. Incrementalk/SAM
2000 0.037 0.07 0.104 1.543 1.329 We al d th ¢ f . |

500 180 0.055 0176 0247 5785 1192 ~We also compared t e performance of an incremental ver-
500 0.062 0.177 0.271 3.559 8.43 sion of v/SAM, described in Section VI, with a standard EKF
1280 0.068 0.175 0.272 5.143 6.348 implementation by simulating 500 time steps in a synthetic
2000 0.07 0.181 0.279 5.548 6.908 ; : ;

1000 T80 5104 .40 0555 70597 45.986 e_nvwonment with 20Q0 Igndmarks. The res_ults are shown in
500 0.109 0.738 0.945 121412  77.849 Figure 10. The factorization of was done using sparse LDL
1280 0.124 0.522 0.746  14.151 35719 [24], while for the column ordering we useymamd[22], a
2000 0126 0437 0657 15914 25611 version ofcolamdfor symmetric positive definite matrices.

Smoothingevery time stefbecomes cheaper than the EKF
Fig. 6. Averaged simulation results over 10 tries, in seconds, for environmeMf1en the number of landmark¥' reaches 600. At the end,
with various number of landmark¥’ and simulations with trajectory lengths with N' = 1, 100, each factorization took about 0.6 s., and the
M. The methods are discussed in more detail in the text.idiemethod  g|ope s nearly linear over time. In contrast, the computational
corresponds to doing no factorization and measures the overhead. . . .
requirements of the EKF increase quadratically wikh and
by the end each update of the EKF took over a second.
As implementation independent measures, we have also
plotted N2, as well as the number of non-zerasz in the
A. Batchv/SAM Cholesky triangleR. The behavior of the latter is exactly

We have experimented at length with different implemerfPposite to that of the EKF: when new, unexplored terrain
tations of Cholesky, LDL, and QR factorization to establisi$ encountered, there is almost no correlation between new
which performed best. All simulations were done in MATLABfeatures and the past trajectory and/or map, and stays
on a 2GHz. Pentium 4 workstation running Linux. Experialmost constant. In contrast, the EKF's computation is not
ments were run in synthetic environments like the one sho@#ffected when re-entering previously visited areas -closing the
in Figure 5, with 180 to 2000 landmarks, for trajectories dPOP- whereas that is exactly whe fill-in occurs.

length 200, 500, and 1000. Each experiment was run 10 timedVe have reason to belief that these results can be further im-
for 5 different methods: proved: profiling of our implementation showed that roughly

2/3 of the time is spent updating, which is an artifact of

our sparse matrix representation. A compressed row scheme
would probably increase the speed by another factor of 2. In

addition, incremental QR updating methods should be much

faster than doing full factorizations every time.

VII. I NITIAL FINDINGS AND SIMULATION RESULTS

« hone no factorization performed

« Idl: Davis’ sparse LDL factorization [24]

o chol MATLAB built-in Cholesky factorization
« mfgr. multifrontal QR factorization [23]

e Qr: MATLAB built in QR factorization

The results are summarized in Figure 6. We have found that, VIIl. CONCLUSION
under those circumstances, In conclusion, we believe square root information smooth-
1) The freely available sparse LDL implementation by Ting to be of great practical interest to the SLAM community. It

Davis [24] beats MATLAB's built-in Cholesky factor- recovers the entire trajectory and is exact, and even the decid-
ization by about 30%. edly sub-optimal incremental scheme we evaluated behaves
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Fig. 7. Original information matrixZ and its Cholesky triangle. Note the dense fill-in on the right, linking the entire trajectory to all landmarks.
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Fig. 8. Information matrixZ after reordering and its Cholesky triangle. Reordering of columns (unknowns) does not affect the sparsgndss tfe
number of non-zeroes if® has dropped from approximately 2.8 million to about 250 thousand.
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Fig. 9. By doing the reordering while taking into account the special block-structure of the SLAM problem, the non-zero count can be eliminated even
further, to about 130K, a reduction by a factor 20 with respect to the origthaind substantially less than the 500K entries in the filtering covariance matrix.
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Fig. 10. Timing results for incremental SAM in a simulated environment with 2000 landmarks, similar to the one in Figure 5, but 10 blocks on the side. As
the number of landmarks seen increases, the EKF becomes quadratically slower. Note that the number of nen-Zeooeases faster when large loops
are encountered arourid= 200 and: = 350.

much better than the EKF as the size of the environmentg] M. Paskin, “Thin junction tree filters for simultaneous localization and
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