
Robot Planning in Partially Observable
Continuous Domains

Josep M. Porta
Institut de Robòtica i

Informàtica Industrial (UPC-CSIC)
Llorens i Artigas 4-6, 08028, Barcelona

Spain
Email: porta@iri.upc.edu

Matthijs T. J. Spaan
Informatics Institute

University of Amsterdam
Kruislaan 403, 1098SJ, Amsterdam

The Netherlands
Email: mtjspaan@science.uva.nl

Nikos Vlassis
Informatics Institute

University of Amsterdam
Kruislaan 403, 1098SJ, Amsterdam

The Netherlands
Email: vlassis@science.uva.nl

Abstract— We present a value iteration algorithm for learn-
ing to act in Partially Observable Markov Decision Processes
(POMDPs) with continuous state spaces. Mainstream POMDP
research focuses on the discrete case and this complicates its
application to, e.g., robotic problems that are naturally modeled
using continuous state spaces. The main difficulty in defining
a (belief-based) POMDP in a continuous state space is that
expected values over states must be defined using integrals that,
in general, cannot be computed in closed from. In this paper, we
first show that the optimal finite-horizon value function over the
continuous infinite-dimensional POMDP belief space is piecewise
linear and convex, and is defined by a finite set of supporting
α-functions that are analogous to the α-vectors (hyperplanes)
defining the value function of a discrete-state POMDP. Second,
we show that, for a fairly general class of POMDP models in
which all functions of interest are modeled by Gaussian mixtures,
all belief updates and value iteration backups can be carried out
analytically and exact. A crucial difference with respect to the
α-vectors of the discrete case is that, in the continuous case, the
α-functions will typically grow in complexity (e.g., in the number
of components) in each value iteration. Finally, we demonstrate
PERSEUS, our previously proposed randomized point-based value
iteration algorithm, in a simple robot planning problem with a
continuous domain, where encouraging results are observed.

I. INTRODUCTION

A popular formalism for decision making under uncertainty
is the Markov Decision Process (MDP) framework [1]. In this
paradigm, an agent interacts with a given system by executing
actions that change the state of the system stochastically and
that provide rewards or penalties to the agent. The objective of
the learning agent is to identify for each state the action that
produces the most reward in the long term. When the decision
making has to performed based on uncertain information about
the state of the system, the task is naturally formalized as a
Partially Observable Markov Decision Process (POMDP) [2]–
[6]. POMDPs have often been used as a framework for
planning in robotics [7]–[10]. In general, computing the exact
solution of a POMDP is an intractable problem [11], [12], even
for the discrete case (i.e., discrete sets of states, actions, and
observations). Two main factors cause this high computational
cost [13]. The first one is the curse of history: the number
of action-observation sequences to be considered increases
exponentially as we extend the planning horizon. Fortunately
the curse of history can be minimized by limiting ourselves to

approximate solutions [13], [14]. The second factor that makes
POMDP algorithms inefficient is the curse of dimensionality:
the computational cost of discrete state POMDP algorithms
scales with the number of states. Therefore, the finer the
granularity of the state space discretization, the higher the cost
of solving the POMDP. One insight we can extract from this
fact is that it would be desirable to avoid the discretization of
the state space. Moreover, real world problems are naturally
formalized using continuous spaces. For instance, in a robot
navigation problem, the state to be estimated is the pose of
the robot that, for a robot moving on a planar surface, is
naturally defined in the continuous space of the Cartesian
coordinates of the robot and its orientation. Linear POMDPs
with continuous states and quadratic reward functions have a
closed solution [15]. However, this is a too restrictive case for
many practical purposes. Existing algorithms for continuous-
state POMDPs with general reward functions are based on
policy search [16], [17] or approximate (grid-based) value iter-
ation [18], [19]. For discrete-state POMDPs, recent promising
algorithms are based on point-based value iteration [13], [14].

In this paper, we present a novel approach to solve POMDPs
in continuous state spaces via value iteration. The main
difficulty of working in continuous state spaces is that expected
values over states must be defined using integrals. These
integrals cannot be computed in closed form for general
functions and, therefore, only approximation techniques can
be used [19]. In our approach, we restrict all functions defined
on the state space to a particular, although highly expressive,
family of functions: linear combinations of Gaussians. This
allows us to evaluate all integrals involved in the value iteration
POMDP formulation in closed form. Using this fact, we can
adapt to the continuous case the rich machinery developed for
discrete-state POMDP value iteration, in particular the point-
based algorithms.

This paper is organized as follows. First, in Section II, we
review the POMDP framework and the value iteration process
for discrete-state POMDPs. In Section III, we generalize the
value function representation commonly used in discrete-state
POMDPs to continuous-state ones. This allows us to do value
iteration for the continuous case. In Section IV, we derive
closed formulas for the elements involved in the value iteration

framework introduced in Section III, assuming a Gaussian-
based representation for the beliefs and the models defining
the POMDP. In Section V, we use these closed formulas to
define a point-based algorithm for Gaussian-based POMDPs.
In Section VI, we present some results with the proposed
algorithm and, in Section VII, we summarize our work and
point to directions for further research.

II. PRELIMINARIES: POMDPS

A POMDP models an agent interacting with a system using
the following elements

• A set of system states, S.
• A set of agent actions, A.
• A set of observations, O.
• An action (or transition) model defined by p(s′|a, s), the

probability that the system changes from state s to s′

when the agent executes action a.
• An observation model defined by p(o|s), the probability

that the agent observes o when the system reaches state s.
• A reward function defined as ra(s) ∈ R, the reward

obtained by the agent if it executes action a when the
the system is in state s.

At a given moment, the system is in a state, s, and the
agent executes an action, a. As a result, the agent receives a
reward, r, the system state changes to s′ and, then, the agent
observes o. The knowledge of the agent about the system state
is represented as a belief, i.e., a probability distribution over
the state space. The initial belief is assumed to be known and,
for a discrete set of states, if b is the belief of the agent about
the state, the belief after executing action a and observing o
is

ba,o(s′) =
p(o|s′)

p(o|a, b)

∑

s∈S

p(s′|s, a) b(s). (1)

A function mapping beliefs to actions is called a policy.
An optimal policy is one that, on the average, generates as
much reward as possible in the long term. The value function
condenses the immediate and delayed reward that can be
obtained from a given belief. This function can be expressed
in a recursive way

Vn(b) = max
a

Qn(b, a), (2)

with

Qn(b, a) =
∑

s∈S

ra(s) b(s) + γ
∑

o

p(o|b, a) Vn−1(b
a,o), (3)

where n is the planning horizon, S and O are assumed
discrete and γ ∈ [0, 1) is a discount factor that trades off
the importance of the immediate and the delayed reward. The
above recursion is usually written in functional form

Vn = H Vn−1 (4)

and it is known as the Bellman recursion [20]. This recursion
converges to a fixed point V ∗ that is the optimal value
function [1] An optimal policy π∗ can be defined as

π∗(b) = arg max
a

Q∗(b, a)

for Q∗ the Q-function associated with the optimal value
function, V ∗.

Value iteration for POMDPs [2], [6], [21] generates a
sequence of functions Vi using the recurrence in Eq. 4 that
progressively approach V ∗ and computes an approximately
optimal policy from the final Vi.

At first sight the value function seems intractable, but it can
be expressed in a simple form [2]

Vn(b) = max
{αi

n}i

∑

s

αi
n(s) b(s),

with {αi
n}i a set of vectors. Using this formulation, value

iteration algorithms typically focus on the computation of the
αn-vectors.

III. POMDPS IN CONTINUOUS STATE SPACES

In this section, we generalize POMDPs to continuous state
spaces, while still assuming discrete action and observation
spaces. With this formulation, we avoid the necessity of
discretizing the state space and, thus, we reduce the chance of
being affected by the curse of dimensionality.

In the discrete case, expectations for a given belief are
computed by summing over the state space (see Eqs. 1
and 3). The generalization to the continuous case amounts
to computing these expected values by integrating instead of
summing. Thus we have

ba,o(s′) =
p(o|s′)

p(o|a, b)

∫

s

p(s′|s, a) b(s), (5)

and

Qn(b, a) =

∫

s

ra(s) b(s) + γ
∑

o

p(o|b, a) Vn−1(b
a,o), (6)

where ra : S → R is a continuous reward function for action
a.

With a continuous state space, the belief space is also
continuous, as in the discrete case, but now with an infinite
number of dimensions. However, there are several properties
typical of value functions for discrete state spaces that still
hold in the continuous case. Namely, we can prove [22]
that (1) the optimal finite-horizon value function is piecewise
linear and convex (PWLC) in the belief space, (2) the value
function recursion is isotonic, and (3) this recursion is also a
contraction (and thus, the iterative computation of the value
function for increasing horizons will converge to the optimal
value function V ∗).

The PWLC is a basic property since it allows to represent
the value function using a small set of supporting elements.
This kind of representation is the key element to define the
value iteration process. To prove this property, we first need
to prove the following lemma.

Lemma 1: The value function in a continuous-state
POMDP can be expressed as

Vn(b) = max
{αi

n}i

∫

s

αi
n(s) b(s),

for appropriate α-functions αi
n : S → R.

Proof: The proof, as in the discrete case, is done via
induction. For planning horizon 0, we only have to take into
account the immediate reward and, thus, we have that

V0(b) = max
a

∫

s

ra(s) b(s),

and, therefore, if we define

{αi
0(s)}i = {ra(s)}a∈A,

we have that, as desired

V0(b) = max
{αi

0
}i

∫

s

αi
0(s) b(s).

For the general case, we have that, using Eqs. 2 and 6,

Vn(b) = max
a

{

∫

s

ra(s) b(s) + γ
∑

o

p(o|a, b) Vn−1(b
a,o)

}

,

and, by the induction hypothesis,

Vn−1(b
a,o) = max

{α
j

n−1
}j

∫

s′

αj
n−1(s

′) ba,o(s′).

From Eq. 5,

Vn−1(b
a,o) = max

{α
j

n−1
}j

∫

s′

αj
n−1(s

′)
p(o|s′)

p(o|a, b)

∫

s

p(s′|s, a) b(s)

=
1

p(o|a, b)
max

{α
j

n−1
}j

∫

s′

αj
n−1(s

′) p(o|s′)

∫

s

p(s′|s, a) b(s),

and, therefore,

Vn(b) = max
a

{

∫

s

ra(s) b(s) +

γ
∑

o

max
{α

j

n−1
}j

∫

s′

αj
n−1(s

′) p(o|s′)

∫

s

p(s′|s, a) b(s)
}

= max
a

{

∫

s

ra(s) b(s) +

γ
∑

o

max
{α

j

n−1
}j

∫

s

[

∫

s′

αj
n−1(s

′) p(o|s′) p(s′|s, a)
]

b(s)
}

.

At this point, we define

αj
a,o(s) =

∫

s′

αj
n−1(s

′) p(o|s′) p(s′|s, a). (7)

With this, we have that

Vn(b) = max
a

{

∫

s

ra(s) b(s) + γ
∑

o

max
{α

j
a,o}j

∫

s

αj
a,o(s) b(s)

}

,

and we define

αa,o,b = arg max
{α

j
a,o}j

∫

s

αj
a,o(s) b(s). (8)

Observe that, for a given a and o, αa,o,b is just one of the
M elements in the set {αj

a,o}j . Using a reasoning parallel to
that of the enumeration phase of the Monahan’s algorithm [3],
we can have, at most, |A|M |O| different αa,o,b-functions. The
finite cardinality of this set is a crucial point since it proves
that we can represent Vn(b) with a finite set of supporting

α-functions, despite the infinite dimensionality of the belief
space.
Using the above, we can write

Vn(b) = max
a

{

∫

s

ra(s) b(s) + γ
∑

o

∫

s

αa,o,b(s) b(s)
}

= max
a

{

∫

s

[

ra(s) + γ
∑

o

αa,o,b(s)
]

b(s)
}

.

If we define

{αi
n(s)}i = {ra(s) + γ

∑

o

αa,o,b(s) }a∈A, (9)

we have Vn in the desired form

Vn(b) = max
{αi

n}i

∫

s

αi
n(s) b(s), (10)

and, thus, the lemma holds.
Lemma 2: The value function is PWLC in the belief space.

Proof: It holds that

Vn(b) = max
{αi

n}i

V i
n(b),

with
V i

n(b) =

∫

s

αi
n(s) b(s).

For a particular V i
n clearly holds

V i
n(κ b1 + λb2) = κ V i

n(b1) + λ V i
n(b2),

for arbitrary κ and λ. Therefore, each V i
n is a linear function

in b.
The piecewise linearity part of the property is given by

the fact that the {αi
n}i set is of finite cardinality and, as

shown above, Vn is linear, for each individual αi
n. Finally, the

convexity is given by the fact that we take the maximum of
convex (linear) functions when computing the value function
and, thus, we obtain a convex function as a result.

Eqs. 7 to 9 constitute the value iteration process for con-
tinuous state POMDP since they provide a constructive way
to determine the elements (i.e., the α-functions) defining Vn

from those defining Vn−1.

IV. GAUSSIAN-BASED POMDPS

In previous section, we left as an open point how to actually
compute the belief update (Eq. 5), the steps in the value
iteration process (Eqs. 7 to 9), and the value for a given
belief point (Eq. 10). In this section, we show how these
computations are possible assuming that the beliefs as well as
the observation, action, and reward models are represented as
linear combinations of Gaussians. We first formally introduce
our assumptions on the models (Section IV-A) and then we
define the belief update (Section IV-B) and the basic value
iteration steps (Section IV-C) for Gaussian-based POMDPs.

Note that other families of integrable functions could
be used to determine the α-functions in closed form, but
Gaussian-based models provide a high degree of flexibility
and are of common use in many applications, including
robotics [23], [24].

A. Models for Gaussian-based POMDPs
We will assume that belief points are represented as Gaus-

sian mixtures

b(s) =
∑

j

wj φ(s|sj ,Σj), (11)

with φ a Gaussian with mean sj and covariance matrix Σj

and where the mixing weights satisfy wj > 0,
∑

j wj = 1. In
the extreme case, Gaussian mixtures with an infinite number
of components would be necessary to represent a given point
in the continuous, infinite-dimensional belief space. However,
only Gaussian mixtures with few components are needed in
practical situations.

We assume that our observation model is defined non-
parametrically from a set of samples T = {(si, oi) | i ∈
[1, N]} with oi an observation obtained at state si. Using these
samples, the observation model can be defined as

p(o|s) =
p(s|o) p(o)

p(s)
,

and, assuming a uniform p(s) in the space covered by T , and
approximating p(o) from the samples in the training set we
have

p(o|s) ≈
[1

No

No
∑

i=1

λo
i φ(s|so

i ,Σ
o
i)

]No

N
=

No
∑

i=1

wo
i φ(s|so

i ,Σ
o
i)

with so
i one of the No points in T with o as an associated

observation and where wo
i = λo

i /N and Σo
i are, respectively,

a weighting factor and a covariance matrix associated with
that training point. The sets {λo

i }i and {Σo
i }i are defined so

that

p(s) =
∑

o

p(s|o) p(o) =
∑

o

No
∑

i=1

wo
i φ(s|so

i ,Σ
o
i),

is (approximately) uniform in the area covered by T .
As far as the action model is concerned, we assume it is

linear-Gaussian

p(s′|s, a) = φ(s′|s + ∆(a),Σa). (12)

Non-linear action models can be approximated as it is done,
for instance, in the extended Kalman filter or in the unscented
Kalman filter [25]. The function ∆ : A → S implements the
transition model of the system.

Finally, the reward can be seen as an observation with an
associated scalar value. Therefore, assuming a finite set of
possible rewards R = {ri | i ∈ [1,M]}, the reward model
p(r|s, a) for each particular a can be represented in the same
way as the observation model

p(r|s, a) ≈
Mr
∑

i=1

wr
i φ(s|sr

i ,Σ
r
i).

With that, we have that

ra(s) =
∑

r∈R

r p(r|s, a) ≈
∑

r∈R

r

Mr
∑

i=1

wr
i φ(s|sr

i ,Σ
r
i),

that is an unnormalized Gaussian mixture.

B. Belief update for Gaussian-Based POMDPs

The belief update on Eq. 5 can be implemented in our model
taking into account that it consists of two steps. The first one is
the application of the action model on the current belief state.
This can be computed as the convolution of the Gaussians
representing b(s) (Eq. 11) with the Gaussian representing the
action model (Eq. 12). This convolution results in

∫

s

p(s′|s, a) b(s) =
∑

j

wj φ(s|sj + ∆(a),Σj + Σa).

In the second step of the belief update, the prediction obtained
with the action model is corrected using the information
provided by the observation model

ba,o(s′) ∝
[

∑

i

wo
i φ(s′|so

i ,Σ
o
i)

]

×

[

∑

j

wj φ(s|sj + ∆(a),Σj + Σa)
]

=
∑

i,j

wo
i wj φ(s′|so

i ,Σ
o
i) φ(s|sj + ∆(a),Σj + Σa)

The product of two Gaussian functions is a scaled Gaussian.
Therefore, we have that

ba,o(s′) ∝
∑

i,j

wo
i wj δa,o

i,j φ(s′|sa,o
i,j ,Σa,o

i,j),

with

δa,o
i,j = φ(sj + ∆(a) | so

i ,Σ
o
i + Σj + Σa),

Σa,o
i,j = ((Σo

i)
−1 + (Σj + Σa)−1)−1,

sa,o
i,j = Σa,o

i,j ((Σo
i)

−1 so
i + (Σj + Σa)−1 (sj + ∆(a))).

The proportionality in the definition of ba,o(s′) implies that
the weights (wo

i wj δa,o
i,j , ∀i, j) should be scaled to sum to one.

C. Backup Operator for Gaussian-Based POMDPs

The computation of the mapping H (Eq. 4) for a given
belief point b is called a backup. This mapping determines the
α function (or α-vectors in the discrete case) to be included
in Vn for a belief point under consideration (see Eqs. 7 to 9).
A full backup, i.e., a backup for the whole belief space,
involves the computation of all relevant α-functions for Vn.
Full backups are computationally expensive (in the discrete
case they involve the use of linear programming in order to
determine a sufficient set of points on which to backup), but
the backup for a single belief point is relatively cheap. This is
exploited by the point-based POMDP algorithms to efficiently
approximate Vn on a fixed set of belief points [13], [14]. Next,
we describe the backup operator on a continuous state space
that we will use later in the PERSEUS algorithm.
The backup for a given belief point b is

backup(b) = arg max
{αi

n}i

∫

s

αi
n(s) b(s),

where αi
n(s) is defined in Eqs. 8 and 9 from the αa,o-functions

(Eq. 7).

Lemma 3: The functions αi
n(s) can be expressed as linear

combinations of Gaussians, assuming the sensor, action and
reward models are also Gaussian-based.

Proof: This lemma can be proved via induction. For
n = 0, αi

0(s) = ra(s) for a fixed a and thus it is indeed an
unnormalized Gaussian mixture. For n > 0, we assume that

αj
n−1(s

′) =
∑

k

wj
k φ(s′|sj

k,Σj
k).

Then, with our particular models, αj
a,o(s) in Eq. 7 is the

integral of three linear combinations of Gaussians

αj
a,o(s) =

∫

s′

[

∑

k

wj
k φ(s′|sj

k,Σj
k)

][

∑

l

wo
l φ(s′|so

l ,Σ
o
l)

]

×

φ(s′|s + ∆(a),Σa)

=
∑

k,l

wj
k wo

l

∫

s′

φ(s′|sj
k,Σj

k)φ(s′|so
l ,Σ

o
l)φ(s′|s + ∆(a),Σa).

In this case, we have to perform the product of two Gaus-
sians twice, once for φ(s′|sj

k,Σj
k) and φ(s′|so

l ,Σ
o
l) to get

(δj,o
k,l φ(s′|s1,Σ1)) and once more for (δj,o

k,l φ(s′|s1,Σ1)) and
φ(s′|s+∆(a),Σa) to get (δj,o

k,l βj,o,a
k,l (s)φ(s′|s,Σ)). The terms

δj,o
k,l and βj,o,a

k,l (s) can be expressed as

δj,o
k,l = φ(so

l |s
j
k,Σj

k + Σo
l),

βj,o,a
k,l (s) = φ(s|sj,o

k,l − ∆(a),Σj,o
k,l + Σa),

with

Σj,o
k,l = [(Σj

k)−1 + (Σo
l)

−1]−1,

sj,o
k,l = Σj,o

k,l [(Σj
k)−1 sj

k + (Σo
l)

−1 so
l].

With this, we have

αj
a,o(s) =

∑

k,l

wj
k wo

l

∫

s′

δj,o
k,l βj,o,a

k,l (s) φ(s′|s,Σ)

=
∑

k,l

wj
k wo

l δj,o
k,l βj,o,a

k,l (s)

∫

s′

φ(s′|s,Σ)

=
∑

k,l

wj
k wo

l δj,o
k,l βj,o,a

k,l (s).

Once we have the αj
a,o-functions, we can compute the αi

n-
functions. To do that, we need to determine the αj

a,o for which
∫

s

αj
a,o(s) b(s)

is maximized. Since the integral of the product of two Gaus-
sian mixtures (in particular an α-function and a belief point)
is a rather common operation in the continuous state POMDP
framework we will denote it by

〈α, b〉 =

∫

s

α(s) b(s).

This operator can be computed as

〈α, b〉 =

∫

s

[

∑

k

wk φ(s|sk,Σk)
][

∑

j

wj φ(s|sj ,Σj)
]

=
∑

k,j

wk wj

∫

s

φ(s|sk,Σk) φ(s|sj ,Σj)

=
∑

k,j

wk wj φ(sj |sk,Σk + Σj).

Using this operator and Eqs. 8 and 9, we define

{αi
n(s)}i = {ra(s) + γ

∑

o

arg max
{α

j
a,o}j

〈αj
a,o, b〉}a∈A.

Since all elements involved in the definition are linear combi-
nation of Gaussians so is the final result.
Using the above lemma, the backup function is

backup(b) = arg max
{αi

n}i

〈αi
n, b〉,

and the value of Vn at b (Eq. 10) is simply

Vn(b) = 〈backup(b), b〉.

V. CONTINUOUS-STATE PERSEUS

In this section, we use the backup operator to extend to
the continuous case the point-based value iteration algorithm
PERSEUS [14], [26], which has been shown to be very efficient
for discrete state POMDPs. The continuous-state PERSEUS
algorithm is shown in Table I. Point-based POMDP algorithms
focus on identifying the α-functions (α-vectors in the discrete
case) for a set of likely belief points. The α-functions for this
restricted set of belief points generalize over the whole belief
space and, thus, they can be used to approximate the value
function for any belief point. The result is an approximation
of the value function with less error in regions of the belief
space where decisions are more likely to be taken.

The value update scheme of PERSEUS implements a ran-
domized approximate value function recursion Vn = H̃Vn−1

for a set of randomly sampled belief points B. First (Table I,
line 2), we let the agent randomly explore the environment
and collect a set B of reachable belief points. Next (Table I,
lines 3-5), we initialize the value function V0 as a single
weighted Gaussian with large covariance and with weight
min{R}/(1 − γ), with R the set of possible rewards.

Starting with V0, PERSEUS performs a number of approxi-
mate value function update stages. The definition of the value
update process can be seen on lines 10–20 in Table I, where
B̃ is a set of non-improved points: points for which Vn+1(b)
is still lower than Vn(b). At the start of each update stage,
Vn+1 is set to ∅ and B̃ is initialized to B. As long as B̃ is not
empty, we sample a point b from B̃ and compute the new α-
function associated with this point using the backup operator
(see Section IV-C and line 14 in Table I). If this α-function
improves the value of b (i.e., if 〈α, b〉 ≥ Vn(b), line 15), we
add α to Vn+1 (line 18). The hope is that α improves the value
of many other points, and all these points are removed from B̃
(line 19). Often, a small number of vectors will be sufficient

Perseus
Input: A continuous state POMDP.
Output: Vn, an approximation to the optimal

value function, V ∗.
1: Initialize
2: B ← A set of randomly sampled belief points.
3: α← min{R}

1−γ
φ(s|0, Σ∞)

4: n← 0
5: Vn ← {α}
6: do
7: ∀b ∈ B,
8: Functionn(b)← arg maxα∈Vn

〈α, b〉
9: Valuen(b)← 〈Functionn(b), b〉
10: Vn+1 ← ∅
11: B̃ ← B
12: do
13: b← Point sampled randomly from B̃.
14: α← backup(b)
15: if 〈α, b〉 < Valuen(b)
16: α← Functionn(b)
17: endif
18: Vn+1 ← Vn+1 ∪ {α}
19: B̃ ← B̃ \ {b′ ∈ B̃ | 〈α, b′〉 ≥ Valuen(b′)}
20: until B̃ = ∅
21: n← n + 1
22: until convergence

TABLE I
THE PERSEUS ALGORITHM. THE backup FUNCTION IS DESCRIBED IN

SECTION IV-C.

to improve Vn(b) ∀b ∈ B, especially in the first steps of value
iteration. As long as B̃ is not empty we continue sampling
belief points from it and trying to add their α-functions to
Vn+1.

If the α computed by the backup operator does not improve
at least the value of b (i.e., 〈α, b〉 < Vn(b), see lines 15 in
Table I), we ignore α and insert a copy of the maximizing
function of b from Vn in Vn+1 (lines 16 and 18). Point b is
now considered improved and is removed from B̃, together
with any other belief points that have the same function as
maximizing one in Vn (line 19). This procedure ensures that
B̃ shrinks at each iteration and that the value update stage
terminates.

PERSEUS stops when a given convergence criterion holds.
This criterion can be based on the stability of the value
function, on the stability of the associated policy, or simply
on a maximum number of iterations.

One point that deserves special consideration when imple-
menting the PERSEUS algorithm is the possible explosion of
the number of components in the Gaussian mixtures defining
the α-functions for increasing n’s and on the number of
components in the belief representation when the belief update
(see Section IV-B) is repeated for many time steps. The larger
the number of components the slower the basic operations of
the algorithm. To keep the number of components bounded, we
adapted the procedure described in [27] that transforms a given

(a)

door
corridor
right end
left end

0.8

0.6

0.4

0.2

0
−15 −10 −5 0 5 10 15

1

(b)

1

0.5

0

−0.5

−1

−1.5
−15 −10 −5 0 5 10 15

enter door
move right
move left

(c)

Fig. 1. A pictorial representation of the test problem (a), the corresponding
observation model (b) and the reward model (c).

Gaussian mixture with k components to another Gaussian
mixture with at most m components, m < k, while retaining
the initial component structure.

VI. EXPERIMENTS AND RESULTS

To demonstrate the viability of our method we carried out
an experiment in a simulated robotic domain. In this problem
(see Fig. 1-a), a robot is moving in a corridor with four doors.
The robot can detect when it is in front of a door and when it is
at the left or right end of the corridor. In any other situation,
the robot just detects that it is in a corridor (see Fig. 1-b).
The robot can move 2 units to the left or to the right (with
Σa = 0.05) and can try to enter a door at any point (even when
not in front of a door). The target for the robot is to locate
the second door from the right and to enter it. The robot only
gets positive reward when it enters the target door (see Fig. 1-
c). When the robot tries to move further than the end of the
corridor (either at the right or at the left) or when it tries to
enter the door at a wrong position it gets negative reward.

The set of beliefs B used in the PERSEUS algorithm
contains 1000 unique belief points. Those belief points are
collected using random walks departing from a belief includ-
ing 4 components that approximate a uniform distribution on
the whole corridor. The walks of the robot along the corridor
are organized in episodes where the robot executes actions
until it tries to enter a door or until it executes 25 (movement)
actions.

1 2 3

0

−0.2
10 10

time (s)
10

V

PSfrag replacements

∆π

1 2 3

0.2

0.1

0

10 10
time (s)

10

re
w

ar
d

PSfrag replacements

∆π

1 2 3

30

20

10

0
10 10 10

time (s)

of

 fu
nc

tio
ns

PSfrag replacements

∆π

1 2 3

600

400

200

0
10 10

time (s)
10

PSfrag replacements

∆
π

Fig. 2. Top: Evolution of the value for all the beliefs in B and the
average accumulated discounted reward for 100 episodes. Bottom: Number
of vectors in Vn and the number of policy changes. Results are averaged for
10 repetitions and the bars represent the standard deviation.

The experimental setup is completed by setting γ to 0.95,
compressing beliefs so that they never contain more than 4
components (i.e., the number of components of the initial
belief) and compressing α-functions so that they never have
more components than those used to represent the reward
function (11 components).

Fig. 2 shows the average results obtained after 10 runs of
the PERSEUS algorithm on this problem. The first plot (top-
left) shows that the value computed as

∑

b∈B V (b) converges.
The second plot (top-right) shows the expected discounted
reward averaged for 100 episodes with the policy available at
the corresponding time slice. The plot indicates that the robot
successfully learns to find out its position and to distinguish
between the four doors. The next plot (bottom-left) shows the
number of α-functions used to represent the value function.
We can see that the number of α-functions increases, but is far
below 1000, the maximum possible number of α-functions (if
we would back up each point in B). In the final plot (bottom-
right) we show the number of changes in the policy from
one time step to the next one. The changes in the policy are
computed as the number of elements in B with a different
action from one time slice to the next. The number of policy
changes drops to close to zero, indicating convergence with
respect to the particular B.

Following the learned policy the robot moves to one of the
ends of the corridor to determine its position and then towards
the correct door to enter it. The snapshots A to I in Fig. 3
show the evolution of the belief of the robot and the executed
action in each case from the initial stage of the episode to the
point at which the target door is reached.

In Fig. 4 we plot the value of beliefs that have only one
component, parametrized by the mean and the covariance of

1

0
−11 −6 4 10

PSfrag replacements

A (→)

B (→)
C (→)
D (←)
E (←)
F (←)
G (←)
H (←)

I (↑)

1

0
−11 −6 4 10

PSfrag replacements
A (→)

B (→)

C (→)
D (←)
E (←)
F (←)
G (←)
H (←)

I (↑)

1

0
−11 −6 4 10

PSfrag replacements
A (→)
B (→)

C (→)

D (←)
E (←)
F (←)
G (←)
H (←)

I (↑)

−11 −6 4 10
0

1

PSfrag replacements
A (→)
B (→)
C (→)

D (←)

E (←)
F (←)
G (←)
H (←)

I (↑)

1

0
−11 −6 4 10

PSfrag replacements
A (→)
B (→)
C (→)
D (←)

E (←)

F (←)
G (←)
H (←)

I (↑)

1

0
−11 −6 4 10

PSfrag replacements
A (→)
B (→)
C (→)
D (←)
E (←)

F (←)

G (←)
H (←)

I (↑)

1

0
−11 −6 4 10

PSfrag replacements
A (→)
B (→)
C (→)
D (←)
E (←)
F (←)

G (←)

H (←)
I (↑)

1

0
−11 −6 4 10

PSfrag replacements
A (→)
B (→)
C (→)
D (←)
E (←)
F (←)
G (←)

H (←)I (↑)

1

0
−11 −6 4 10

PSfrag replacements
A (→)
B (→)
C (→)
D (←)
E (←)
F (←)
G (←)
H (←)

I (↑)
Fig. 3. Evolution of the belief when following the discovered policy. The
arrows under the snapshots represent the actions:→ for moving right,← for
moving left and ↑ for entering the door. On the x-axis the four door locations
are indicated.

PSfrag replacements

µ

σ
0

0

5
−5

10

−10

15

−15

2

6

10

10

0.2

0.4

0.6

0.8

Fig. 4. Value function for single component beliefs as a function of the
mean and the covariance.

this component. We can see that, as the uncertainty about
the position of the robot grows (i.e., as the covariance is
larger) the value of the corresponding belief decreases. The
colors/shadings in the figure correspond to the different ac-
tions: light-gray for moving to the right, white for entering
the door, and dark-gray for moving to the left.

Observe that the advantage of using a continuous state space
is that we obtain a scale-invariant solution. If we have to
solve the same problem in a longer corridor, we can just
scale the Gaussians used in the problem definition and we
will obtain the solution with the same cost as we have now.
The only difference is that more actions would be needed

in each episode to reach the correct door. When discretizing
the environment, the granularity has to be in accordance with
the size of the actions taken by the robot (±2 left/right) and,
thus, the number of states, and consequently the cost of the
planning, grow as the environment grows.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown how to generalize value
iteration to continuous-state POMDPs and, in particular, for
the case of Gaussian-based beliefs and models. This allowed
us to define an efficient point-based value iteration algorithm
that seems to be appropriate for planning problems that are
often encountered in robotics.

An approach to continuous-state POMDPs that is closely
related to ours is presented in [19]. In that work, a belief
is represented by a set of weighted samples, which can be
regarded as a degenerate version of our Gaussian mixture
representation. Additionally, the value function is approxi-
mated by nearest-neighbor interpolation, whereas in our case
the value function achieves generalization through a set of
α-functions. Also, in the above work a real-time dynamic
programming approach is used for updating the value function,
with the Bellman backup operator being approximated by
sampling from the belief transition model. In our case, value
iteration applies on a pre-collected set of beliefs, while the
Bellman backup operator is analytically computed given the
particular value function representation. Although we have not
directly compared our method to the method presented in [19],
we expect our method to be faster (since it plans on a fixed
set of belief points) and the value function to generalize better
over the belief space (through the use of α-functions).

Ongoing work involves extending our framework to con-
tinuous action [26] and observation spaces [28], as well as
defining approximate belief representations using Monte Carlo
techniques [19].

ACKNOWLEDGMENTS

We would like to thank J.J. Verbeek and W. Zajdel for
their contributions to the work reported here, and the four
reviewers for their detailed comments. J.M. Porta has been
partially supported by Ramón y Cajal contract from the Span-
ish Ministry for Science and Technology. M.T.J. Spaan and
N. Vlassis are supported by PROGRESS, the embedded sys-
tems research program of the Dutch organization for Scientific
Research NWO, the Dutch Ministry of Economic Affairs and
the Technology Foundation STW, project AES 5414. Authors
are listed in alphabetical order.

REFERENCES

[1] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Wiley Series in Probability and Mathematical
Statistics. John Wiley and Sons, Inc., 1994.

[2] E. J. Sondik, “The Optimal Control of Partially Observable Markov
Processes,” Ph.D. dissertation, Stanford University, 1971.

[3] G. E. Monahan, “A Survey of Partially Observable Markov Decision
Processes: Theory, Models, and Algorithms,” Management Science,
vol. 28, no. 1, pp. 1–16, 1982.

[4] H. T. Cheng, “Algorithms for Partially Observable Markov Decision
Processes,” Ph.D. dissertation, University of British Columbia, 1988.

[5] A. R. Cassandra, M. L. Littman, and N. L. Zhang, “Incremental
Pruning: A Simple, Fast, Exact Algorithm for Partially Observable
Markov Decision Processes,” in Proceedings of the Thirteenth Annual
Conference on Uncertainty in Artificial Intelligence (UAI–97), 1997.

[6] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and Act-
ing in Partially Observable Stochastic Domains,” Artificial Intelligence,
vol. 101, no. 1-2, pp. 99–134, 1998.

[7] R. Simmons and S. Koenig, “Probabilistic Robot Navigation in Partially
Observable Environments,” in Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 1995.

[8] A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien, “Acting under
Uncertainty: Discrete Bayesian Models for Mobile-Robot Navigation,”
in Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 1996, pp. 963–972.

[9] G. Theocharous and S. Mahadevan, “Approximate Planning with Hierar-
chical Partially Observable Markov Decision Processes for Robot Navi-
gation,” in IEEE International Conference on Robotics and Automation,
2002, pp. 1347–1352.

[10] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun, “Towards
Robotic Assistants in Nursing Homes: Challenges and Results,” in
Robotics and Autonomous Systems, vol. 42, no. 3-4, 2003, pp. 271–281.

[11] C. Papadimitriou and J. N. Tsisiklis, “The Complexity of Markov
Decision Processes,” Mathematical and Operations Research, vol. 12,
no. 3, pp. 441–450, 1987.

[12] O. Madani, S. Hanks, and A. Condon, “On the Undecidability of
Probabilistic Planning and Infinite-Horizon Partially Observable Markov
Decision Problems,” in Proceedings of the Sixteenth National Confer-
ence on Artificial Intelligence (AAAI), 1999, pp. 541–548.

[13] J. Pineau, G. Gordon, and S. Thrun, “Point-based Value Iteration: An
Anytime Algorithm for POMDPs,” in International Joint Conference on
Artificial Intelligence (IJCAI), 2003.

[14] N. Vlassis and M. T. J. Spaan, “A Fast Point-Based Algorithm for
POMDPs,” in In Proceedings of Annual Machine Learning Conference
of Belgium and the Netherlands, Brussels, Belgium, 2004, pp. 170–176.

[15] D. P. Bertsekas, Dynamic Programming and Optimal Control, 2nd ed.
Belmont, MA: Athena Scientific cop, 2001.

[16] A. Y. Ng and M. Jordan, “PEGASUS: A Policy Search Method for
Large MDPs and POMDPs,” in Proceedings of the 16th Conference on
Uncertainty in Artificial Inteligence (UAI), 2000, pp. 406–415.

[17] D. Aberdeen and J. Baxter, “Scalable Internal-State Policy-Gradient
Methods for POMDPs,” in Proceedings of the International Conference
on Machine Learning (ICML), 2002, pp. 3–10.

[18] N. Roy, G. Gordon, and S. Thrun, “Finding Approximate POMDP So-
lutions Through Belief Compression,” Journal of Artificial Intelligence
Research, vol. 23, pp. 1–40, 2005.

[19] S. Thrun, “Monte Carlo POMDPs,” in Advances in Neural Information
Processing Systems (NIPS), S. Solla, T. Leen, and K.-R. Müller, Eds.
MIT Press, 2000, pp. 1064–1070.

[20] R. E. Bellman, Dynamic Programming. Princenton University Press,
1957.

[21] M. Hauskrecht, “Value Function Approximations for Partially Observ-
able Markov Decision Processes,” Journal of Artificial Intelligence
Research, vol. 13, pp. 33–95, 2000.

[22] J. M. Porta, M. T. J. Spaan, and N. Vlassis, “Value Iteration for
Continuous-State POMDPs,” IAS Technical Report, University of Am-
sterdam, Tech. Rep. IAS-UVA-04-04, 2004.

[23] J. J. Leonard and H. F. Durrant-Whyte, “Mobile Robot Localization
by Tracking Geometric Beacons,” IEEE Transactions on Robotics and
Automation, vol. 7, no. 3, pp. 376–382, 1991.

[24] P. Jensfelt and S. Kristensen, “Active Global Localization for a Mobile
Robot Using Multiple Hypothesis Tracking,” IEEE Transactions on
Robotics and Automation, vol. 17, no. 5, pp. 748–760, 2001.

[25] J. Julier and J. K. Uhlmann, “A New Extension of the Kalman Filter
to Nonlinear Systems,” in In Proceedings of AeroSense: The 11th
International Symposium on Aerospace/Defence Sensing, Simulation and
Controls, 1997, pp. 1628–1632.

[26] M. T. J. Spaan and N. Vlassis, “Perseus: Randomized Point-based Value
Iteration for POMDPs,” Journal of Artificial Intelligence Research, 2005.

[27] J. Goldberger and S. Roweis, “Hierarchical Clustering of a Mixture
Model,” in Advances in Neural Information Processing Systems (NIPS),
2005.

[28] J. Hoey and P. Poupart, “Solving POMDPs with Continuous or Large
Discrete Observation Spaces,” in Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 2005.

