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Abstract— This paper considers the problem of controlling a
group of agents under the constraint that every agent must be
given the same control input. This problem is relevant for the
control of mobile micro-robots that all receive the same power
and control signals through an underlying substrate. Despite this
restriction, several examples in simulation demonstrate that it is
possible to get a group of micro-robots to perform useful tasks.
All of these tasks are derived by thinking about the relationships
between robots, rather than about their individual states.

I. INTRODUCTION

A growing number of applications require coordinated con-
trol of multiple agents. For example, applications that have
received considerable interest from the robotics community
include remote monitoring with mobile sensor networks, col-
lision and congestion avoidance with automated air traffic
control systems, and cooperative search and rescue with fleets
of unmanned vehicles. Control architectures used in these ap-
plications vary widely—they might be deliberative or reactive,
they might be computed online or offline, they might use
global or local information, and they might be implemented
using centralized or distributed processing. But regardless of
the control architecture, we typically assume that each agent
is capable either of acting independently or of following a
distinct control input.

In this paper, we are interested in multi-agent systems
in which agents are not capable of acting independently. In
particular, we are interested in multi-agent systems in which
every agent must be given the same control input.

We are motivated by recent work in the development of
untethered, steerable micro-robots [8]. These robots consist
of an untethered scratch drive actuator (used for forward
locomotion) and a cantilevered steering arm (used to turn,
through frictional contact with the substrate). They are globally
controllable, their motion resembling that of unicycles and
other car-like vehicles. However, these robots do not have
onboard sensing or processing, do not receive commands
on distinct communication channels, and do not act inde-
pendently. Instead, every robot receives the same power and
control signal through an underlying electrical grid.

Some work by [8] has focused on removing this restriction.
Electromechanical hysteresis is already used to independently
send “forward” and “turn” commands by snapping the can-
tilever up or down. By adding more cantilever arms and
making the hysteresis more sophisticated, it is possible to
create distinct robots that each respond to some sequences
of commands but not to others. The limits of this technique,

particularly in terms of how many robots can be controlled
simultaneously, have yet to be defined.

In this paper we take a different approach, showing that it
is possible to get a group of micro-robots to perform useful
tasks even if every robot receives the same control signal.

We begin by considering point robots with simple kine-
matics (and without nonholonomic constraints). In Section II
we show that it is impossible to move two point robots to
arbitrary locations if the same control input is sent to both. In
Section III we show that a small change in how the control
input is interpreted (with respect to local coordinate frames
rather than a global coordinate frame) makes it possible to
change the relative location between two point robots, even if
we still cannot move them to arbitrary locations. In particular,
we show that the way in which we can change the relationship
between the two robots has distinct structure—for example, we
can direct them to meet at the same location, but this location
is both unique and fixed. In Section IV, we apply these ideas to
enable not just two, but a much larger number of point robots
to perform useful tasks. In Section V, we return to the micro-
robot example and consider a group of unicycles that must
roll without slipping. Finally, in Section VI, we discuss related
work and in particular point out several other applications of
future interest (micro-robots are only one example).

It is important to understand that we are not advocating any
particular control architecture or computational approach in
this paper. Indeed, not only do we focus entirely on open-loop
control (the steering or motion-planning problem), but we also
neglect many phenomena that might influence control design,
such as process noise, sensor uncertainty, and the presence
of obstacles in the environment. These phenomena may even
present alternative ways of differentiating state in response to
a common input. However, it is difficult to determine how to
take advantage of these phenomena in general—instead, we
choose to focus on phenomena that exhibit distinct structure.

In particular, the key message here is that by thinking about
relationships between robots (rather than about their individual
states), we are led to consider tasks that are not only possible,
but that admit algorithmic solutions with provable levels of
performance. We frame several interesting motion planning
problems as a result—for some, we present a method of
solution; for others, we leave open questions for future work.

II. UNIFORM CONTROL INPUT, UNIFORM RESPONSE

Consider two agents moving in a plane with no obstacles.
Imagine that we can direct their motion by telling them to
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Fig. 1. Two agents are instructed to follow the same path, specified with
respect to a global coordinate frame. The total displacement is represented by
the vector u. The relative location between agents remains fixed.

move a certain distance north, south, east, or west (or in
some arbitrary direction relative to these coordinates). We will
assume that they follow our instructions exactly, without error.
However, we will also assume that the same set of instructions
is given to both agents—we cannot tell one to move east and
the other west, for example. Under this restriction, is it possible
to simultaneously direct both agents to arbitrary locations on
the field? Alternatively, is it possible to direct both agents to
meet at the same location?

We can easily show that the answer to both questions is no.
In particular, let the position of each agent be x1, x2 ∈ R2.
Let the vector u ∈ R2 represent our set of instructions, telling
both agents to move a distance ‖u‖ in a direction u/‖u‖ that is
relative to a fixed coordinate frame. So the position of agent i
after following our instructions is xi +u. First, given arbitrary
goal locations x̂1 and x̂2 in R2, we want to know if some u
exists that satisfies

x̂1 = x1 + u

x̂2 = x2 + u.

Such a u exists only if x̂1−x1 = x̂2−x2. So the goal locations
may not be chosen arbitrarily—they must be in the same place
relative to both agents. Second, we want to know if some u
exists that satisfies

x1 + u = x2 + u.

Such a u exists only if x1 = x2. So the two agents can be
directed to meet at the same location only if they begin at the
same location.

In short, it seems we are considering an example that is
not interesting. The two agents are moving in formation—the
relative location between them is fixed (see Fig. 1).

III. UNIFORM CONTROL INPUT, SELECTIVE RESPONSE

Consider the same two agents moving in a plane with no
obstacles. Again assume that we can direct their motion by
telling them to move a certain distance in a certain direction,
that they follow our instructions exactly, and that the same
set of instructions is given to both agents. But now, rather
than specify the direction of motion with respect to a global
coordinate frame (north, south, east, west), imagine that we
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Fig. 2. Two agents are instructed to follow the same path, specified with
respect to local coordinate frames. The total displacement is u in local
coordinates, which corresponds to R(θ1)u and R(θ2)u in global coordinates.
(a) The relative location between agents does not remain fixed. (b) In fact,
the agents can be directed to meet at the same location.

can specify it with respect to a local coordinate frame (forward,
back, right, left). So if we tell both agents to move forward,
they may move in different directions, depending on which
way they are initially facing. We assume that neither agent
changes their orientation as they move, so that their local
coordinate frames are fixed.

It is still impossible to simultaneously direct both agents
to arbitrary locations. Let the position of each agent
be x1, x2 ∈ R2. Let the initial (and fixed) orientation of each
agent be θ1, θ2 ∈ (−π, π]. Let the vector u ∈ R2 represent our
set of instructions, telling both agents to move a distance ‖u‖
in a direction u/‖u‖ that is relative to their local coordinate
frame. Define the rotation matrix

R(θ) =
[
cos θ − sin θ
sin θ cos θ

]
.

So the position of agent i after following our instructions
is xi+R(θi)u. Given arbitrary goal locations x̂1 and x̂2 in R2,
we want to know if some u exists that satisfies

x̂1 = x1 +R(θ1)u
x̂2 = x2 +R(θ2)u.



Such a u exists only if R(θ1)T (x̂1−x1) = R(θ2)T (x̂2−x2).
So again, the goal locations may not be chosen arbitrarily—
they must be in the same place relative to both agents with
respect to their local coordinate systems.

However, it is now possible to direct both agents to meet
at the same location (as long as we do not care where that
location is). We want to know if some u exists that satisfies

x1 +R(θ1)u = x2 +R(θ2)u.

Such a u is given by

u = − (R(θ2)−R(θ1))
−1 (x2 − x1) .

The inverse (R(θ2)−R(θ1))
−1 exists if and only if θ1 6= θ2.

So if each agent has a different initial orientation (or if both
agents begin at the same location, the trivial case), then both
agents can be directed to meet at the same location. Of course,
this location may not be chosen arbitrarily. Instead, it is unique
and is fixed by x1, x2, θ1, and θ2. We denote it by

u12 = − (R(θ2)−R(θ1))
−1 (x2 − x1)

in local coordinates and by

x̂12 = x1 +R(θ1)u12

= x2 +R(θ2)u12

in global coordinates. But although u12 is fixed, the path taken
to reach u12 is not. For example, consider a set of instructions
specified by an arbitrary continuous curve u : [0, 1] 7→ R2 such
that u(0) = 0. Then for all t ∈ [0, 1] such that u(t) = u12,
the two agents are at the same location, meeting at x̂12.
Conversely, for all t ∈ [0, 1] such that u(t) 6= u12, the two
agents are at different locations.

We have made only a small change to our example from
Section II: interpreting instructions in local coordinate frames
rather than in a global coordinate frame. But now, even though
we still give the same set of instructions to two agents, we can
get something interesting to happen—we can direct them to
meet at the same location (see Fig. 2). This result may seem
surprising, even though it was easy to prove.

IV. CONTROL OF MANY AGENTS

In Sections II-III, we showed that it is possible to change
the relative location between two agents (modeled as points
in the plane) even if the same control input is sent to both. In
particular, we showed that the way in which we can change
the relationship between two agents has distinct structure—for
example, we can direct them to meet at the same location, but
this location is both unique and fixed. In this section we apply
these ideas to enable a group of agents to perform useful tasks.

A. Sequential information passing with no propagation

Consider n agents moving in a plane with no obstacles.
Again assume that we can direct their motion by telling them
to move a certain distance in a certain direction, that they
all follow our instructions exactly, and that the same set of
instructions is given to everyone. Also, assume as in Section III

that we specify the direction of motion with respect to a local
coordinate frame (forward, back, right, left).

Imagine that one agent has an important piece of informa-
tion. We would like this agent to pass the information on to
everyone else. We assume that the only way this agent can pass
information to another agent is by meeting them at the same
location. So we would like to compute a set of instructions
that directs the agent with information to meet everyone else
while traveling the minimum distance possible. We call this
task sequential information passing with no propagation.

Note that we are using the term “information” as an abstrac-
tion for something physical that is passed around. For example,
one might imagine micro-robots propagating a marker (such as
a colored dye or a chemical substance) or exchanging micro-
scale construction materials. It is not assumed that the robots
can communicate, or in fact do anything on their own other
than follow a common control input.

Let the position and initial orientation of each
agent be xi ∈ R2 and θi ∈ (−π, π], respectively,
for all i ∈ {1, . . . , n}. We assume that θi 6= θj for
all i, j ∈ {1, . . . , n} such that i 6= j. Let the continuous
curve u : [0, 1] 7→ R2 represent our set of instructions,
followed with respect to each agent’s local coordinate frame.
Define the rotation matrix

R(θ) =
[
cos θ − sin θ
sin θ cos θ

]
.

So the position of agent i after following our instructions
for time t ∈ [0, 1] is xi + R(θi)u(t). Assume without loss of
generality that agent 1 has the “important information” and
must meet everyone else. Recall from Section III that agent 1
can only meet agent i 6= 1 at the fixed location

x̂i = x1 +R(θ1)ui

= xi +R(θi)ui

where
ui = − (R(θi)−R(θ1))

−1 (xi − x1) .

We also define the initial location by x̂1 = x1 and u1 = 0. So
agent 1 must visit x̂i for all i ∈ {1, . . . , n}. Since the total
distance traveled is equal to the length of the curve u, our
task is to find u of minimum length that passes through ui

for all i ∈ {1, . . . , n}. The optimal u is clearly a sequence of
straight lines between meeting points. It can be specified by
an ordering i(1), . . . , i(n) of the set {1, . . . , n} and found by
solving the following problem:

minimize
n−1∑
k=1

‖ui(k+1) − ui(k)‖

subject to k ∈ {i(1), . . . , i(n)} for all k ∈ {1, . . . , n}
i(k) ∈ {1, . . . , n} for all k ∈ {1, . . . , n}
i(1) = 1

In fact, this problem can be recast as a traveling salesman
problem. Define a graph by a vertex set V = {1, . . . , n} and an
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Fig. 3. Information passing without propagation. An optimal tour for one agent (beginning at x1) to pass information to three other agents by meeting them
each in turn, under the restriction that all agents must be instructed to follow the same path, specified with respect to local coordinate frames. In this tour,
the first agent is directed sequentially to the meeting points x̂13, x̂12, and x̂14.
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Fig. 4. Information passing with propagation. An optimal tour for the same example shown in Fig. 3, again under the restriction that all agents must be
instructed to follow the same path, specified with respect to local coordinate frames. In this case, however, agents that have been given information are allowed
to pass it along to other agents themselves. As a result, the agents are directed sequentially to different meeting points: x̂13, x̂32, and x̂34.

arc set A = {(i, j) for all i, j ∈ V such that i 6= j}. Define a
cost matrix with elements

cij =

{
0 if j = 1
‖ui − uj‖ otherwise

for all i, j ∈ V such that i 6= j. Then the least-cost Hamilto-
nian circuit through the graph defined by V and A defines an
optimal ordering i(1), . . . , i(n) of the set {1, . . . , n}.

Figure 3 shows a simple example for n = 4 agents. Since
each agent follows the same path (interpreted with respect to
a local coordinate frame), it is impossible for them all to meet
at the same location. So, the first agent meets each of the other
three sequentially. The curve u consists of three straight lines:
from u1 = 0 to u3, from u3 to u2, and from u2 to u4.

B. Sequential information passing with propagation

In the previous section we considered an information-
passing task for a group of n agents, that required one agent

to meet each of the others in turn. But what if that first
agent is not the only one that can pass information to others?
Indeed, it may be natural to assume that once a second agent
is given information, they too are able to pass it along. So in
this section, we would like to compute a set of instructions
that directs each agent to be met by someone who has
already received the information, while traveling the minimum
distance possible (where as usual we assume that the same
set of instructions is given to everyone and interpreted with
respect to local coordinate frames). We call this task sequential
information passing with propagation.

Again we denote each agent’s position by xi and initial
orientation by θi, and assume that θi 6= θj for all i 6= j.
The continuous curve u : [0, 1] 7→ R2 represents our set
of instructions, followed with respect to each agent’s local
coordinate frame as represented by a rotation matrix R(θi).
So as before, the position of agent i after following our
instructions for time t ∈ [0, 1] is xi +R(θi)u(t). Assume that



agent 1 is initially given the information to be passed on. Two
agents i and j 6= i can only meet at the fixed location

x̂ij = xi +R(θi)uij

= xj +R(θj)uij

where
uij = − (R(θj)−R(θi))

−1 (xj − xi) .

We also define initial locations by x̂ii = xii and uii = 0
for all i ∈ {1, . . . , n}. Although x̂ij = x̂ji and uij = uji,
by convention we will write x̂ij and uij if information is
being passed from agent i to agent j, and x̂ji and uji if
information is being passed from agent j to agent i. So
for all j ∈ {1, . . . , n}, each agent j must visit and receive
information at x̂ij (equivalently, u must pass through uij) from
some agent i ∈ {1, . . . , n} that has already received it.

Since the total distance traveled is equal to the length
of u, the optimal path is a sequence of straight lines between
meeting points. It can be specified by orderings i(1), . . . , i(n)
and j(1), . . . , j(n) of the set {1, . . . , n} and found by solving
the following problem:

minimize
n−1∑
k=1

‖ui(k+1)j(k+1) − ui(k)j(k)‖

subject to k ∈ {j(1), . . . , j(n)} for all k ∈ {1, . . . , n}
i(k) ∈ {j(1), . . . , j(k − 1)} for all k ∈ {2, . . . , n}
i(k) ∈ {1, . . . , n} for all k ∈ {1, . . . , n}
j(k) ∈ {1, . . . , n} for all k ∈ {1, . . . , n}
i(1) = 1
j(1) = 1

The first constraint ensures that each agent is met; the second
constraint ensures that they are met by someone who already
has information. The other constraints set the variable domains
and the initial conditions.

It seems that, as in Section IV-A, this problem might be re-
cast as a traveling salesman problem. It resembles the “gener-
alized” traveling salesman problem in which cities are divided
into groups and the salesman must visit at least one city in each
group. However, the ordering constraints in our information
passing problem make this formulation difficult. In any case,
this problem is harder to solve than the one in Section IV-A,
having ((n− 1)!)2 possible orderings rather than (n− 1)!. On
the other hand, this problem has distinct structure that may be
useful: for example, denoting Rij = R(θi)−R(θj), we see
that

R12u12 +R23u23 +R34u34 +R41u41 = 0.

Figure 4 shows a simple example for n = 4 agents. In fact,
this is the same example as in Fig. 3. However, here we take
advantage of the ability to propagate information (rather than
requiring one agent to meet all the others) to make the total
distance traveled smaller. After receiving the information, the
third agent (not the first) passes it along to the second and
fourth agents. The curve u consists of three straight lines:
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Fig. 5. Moving four agents inside a disc of minimum radius, for the same
example shown in Figs. 3 and 4. As before, all agents follow the same path,
interpreted with respect to local coordinate frames. In this case r/r0 ≈ 0.9.

from u11 = 0 to u13, from u13 to u32, and from u32 to u34.
This path is about 10% shorter than the one in Fig. 3.

C. Moving everyone close together

Again imagine that we are directing the motion of n agents
in a plane. In previous sections, we have emphasized the
fact that if everyone follows the same path with respect to
their local coordinate frame, it is impossible for them all
to meet at the same location at the same time (they can
only meet pairwise). But what if we are interested in having
everyone move close together rather than having everyone
actually meet? In this section, we show that an optimal policy
to accomplish this task can readily be computed.

As usual we denote each agent’s position by xi and ini-
tial orientation by θi. Let the vector u ∈ R2 represent our
instructions, telling all agents to move a distance ‖u‖ in a
direction u/‖u‖. These instructions are followed with respect
to each agent’s local coordinate frame, as represented by
a rotation matrix R(θi). So, the position of agent i after
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Fig. 6. Motion that avoids collision between four agents, for the same example shown in Figs. 3-5. Each agent has the same radius, and follows the same
path (interpreted with respect to its local coordinate frame). (a) The paths xi +R(θi)u(t) followed by each agent i in the workspace. (b) The curve u(t)
given as input. The shaded region is the set of all u ∈ R2 that would place two robots in collision.

following our instructions is xi +R(θi)u.
Subsequently, a disc with center z ∈ R2 and radius r > 0

contains the entire group of agents if ‖R(θi)u+ xi − z‖ ≤ r
for all i = 1, . . . , n. We measure the distribution of the group
by the radius of the smallest such disc (for any z). We
would like to find an input u that minimizes this distribution.
We can do this by solving the following second-order cone
program (SOCP):

minimize r

subject to ‖R(θi)u+ xi − z‖ ≤ r for all i = 1, . . . , n.

This SOCP is convex, and can be solved efficiently (by using
an interior-point or primal-dual algorithm, for example [3]).

Figure 5 shows a simple example for n = 4 agents (the
same agents as in Figs. 3 and 4). In this case, the optimal
input u reduces the radius of the smallest disc containing all
four agents by approximately 10%.

D. Avoiding collisions

Up to now, we have considered tasks that require agents to
meet at the same location (in other words, to collide) or at

least to move closer together. In this section, we consider the
problem of avoiding collision. As before, assume that we are
directing the motion of n agents in the plane by specifying a
single path that each agent follows with respect to their local
coordinate frame. But now, also assume that each agent has
some physical shape—for example, we might model agents as
discs of fixed radius. We would like to plan a collision-free
path between any reachable start and goal configurations.

Denote each agent’s position by xi and initial orientation
by θi. Assume that θi 6= θj for all i 6= j. The continuous
curve u : [0, 1] 7→ R2 represents our set of instructions, fol-
lowed with respect to each agent’s local coordinate frame as
given by a rotation matrix R(θi). So, the position of agent i
after following our instructions for time t is xi +R(θi)u(t).
Likewise, the distance between any two agents i and j in the
workspace is

dij(u) = ‖(R(θi)−R(θj))u+ (xi − xj)‖

Level sets of dij as a function of u ∈ R2 are circles centered
at

uij = − (R(θj)−R(θi))
−1 (xj − xi) .



In particular, if we model each agent by a disc of radius r in
the workspace, one can show that the set of all u ∈ R2 placing
agents i and j in collision is a disc centered at uij with radius

r̂ij =
2r√

2− 2 cos (θ1 − θ2)
.

Assume we are given u(0) and u(1), corresponding to
reachable start and goal configurations xi +R(θi)u(0)
and xi +R(θi)u(1), respectively, for each agent i. Then
the problem of planning a collision-free path for all agents
between start and goal is a path planning problem in a two-
dimensional configuration space R2 with n(n− 1)/2 circular
obstacles, each a disc of radius r̂ij centered at uij for some i
and j. Many different algorithms are available to solve such
problems [12], [6], [13].

Figure 6 shows a simple example for n = 4 agents (the same
as in Figs. 3-5). The path of each agent in the workspace is
shown in Fig. 6(a); the curve u (our set of instructions) is
shown in Fig. 6(b). Since there are four agents, there are six
circular obstacles—shown as shaded regions—that must be
avoided by u. Notice that although the radius of each agent
is the same, the radius of each obstacle can be arbitrarily
large, depending on the difference θi − θj between each pair
of initial orientations.

V. THE MICRO-ROBOT EXAMPLE

Thus far we have assumed a simple kinematic model for
each agent. However, one of the motivational applications
with which we began this paper involved car-like micro-robots
subject to a nonholonomic constraint. If we again assume that
two agents are directed to follow the same path (interpreted
with respect to local coordinate frames), but now assume that
they roll without slipping, is it still possible to direct them both
to meet at the same location? Is that location still a single fixed
point? Is it still impossible to direct both agents to arbitrary
locations?

In fact, if we model each agent as a unicycle (alternatively,
a kinematic car or a differential drive vehicle), then the
answer to each question is yes. This result follows simply
from the invariance of unicycle trajectories under rotation
and translation. In particular, consider a unicycle that moves
forward at constant (unit) velocity, so we can direct its motion
only by changing the turning rate v(t) ∈ R as a function
of time. Denote the position and heading of the unicycle
by u ∈ R2 and θ ∈ S1, respectively. Then we can write the
equations of motion as

u̇ =
[
cos θ
sin θ

]
θ̇ = v

For a given control input v(t), these equations can be in-
tegrated to find u(t) and θ(t). Assume that both u(0) = 0
and θ(0) = 0. If we apply the same control input v(t) to a
second unicycle with states u′ and θ′ and with different initial

x1

x2

x̂12

(a)

x1

x2

x̂12

(b)

Fig. 7. Examples of different ways for two agents to meet at the same
location, when their motion is subject to a nonholonomic constraint. Both
agents are modeled as unicycles that can only drive forward and that have a
minimum turning radius. Their final angle depends on the path taken; their
meeting point does not.

conditions u′(0) = u′0 and θ′(0) = θ′0, then we can show that

u′(t) = u′0 +R(θ′0)u(t)
θ′(t) = θ′0 + θ(t),

where R(θ) is defined as the rotation matrix

R(θ) =
[
cos θ − sin θ
sin θ cos θ

]
.

Consequently, if we model each agent i as a unicycle with
initial position xi ∈ R2 and orientation θi ∈ (−π, π], then its
position after time t is xi +R(θi)u(t), exactly as before. The
only difference now is that the input u(t), a curve in R2, must
itself satisfy the equations of motion of a unicycle.

Figure 7 shows an example of directing two agents to meet
at the same location (exactly as described in Section III),
assuming that they are both unicycles with a minimum turning
radius. Notice that the final heading of both agents depends



on the path taken to reach the meeting point. So, despite the
fact that our set of instructions is now only one-dimensional
(turning rate as a function of time), we can still get a group
of agents to perform useful tasks.

VI. RELATED WORK

A growing number of applications require the coordinated
control of multiple agents. For many of these applications,
it is possible to engineer the behavior of, and interactions
between, individual agents. For example, one strategy for
controlling large groups of mobile robots is to take advantage
of flocking or swarming behavior. By following simple control
rules based on local sensor measurements (such as regulating
distance from nearest neighbors [20]), it is possible for a group
of identical robots to accomplish complex global tasks such
as movement synchronization [11], rendezvous [7], platoon-
ing [15], [10], and distributed manipulation [16]. Moreover,
few external inputs are needed to influence this group behavior.
For example, a formation can be controlled by commanding
the location of its centroid or the variance of its distribution [1]
or by directing the movement of a “virtual leader” [14].

In this paper, we are interested in applications for which it
is impossible to engineer the behavior of individual agents. In
particular, we have focused on one multi-agent system [8] in
which every agent receives the same control input. A variety
of other multi-agent systems are subject to similar constraints.
For example, recent work has considered problems such as
herding cattle with a robotic sheepdog [22] or with “virtual
fences” [4], interacting with cockroaches using a mobile
robot [5], guiding crowds during emergency egress [19], and
even using groups of micro-organisms to manipulate small
objects [18], [21]. These applications involve considerable
uncertainty, so existing solution approaches seek to control
the distribution of a group, modeled either by moments [9]
or by a probability density function [17] using the formalism
of stochastic optimal control. We have presented a different
approach that is computationally more tractable but that does
not yet address uncertainty. Our approach was based on
thinking about relationships between agents, and deriving a
set of useful tasks in that context.

VII. CONCLUSION

In this paper we considered the problem of controlling an
entire team of agents using only a single control input. Initially
we were motivated to pursue this problem by the development
of untethered, steerable micro-robots [8], all of which receive
the same power and control signals through an underlying
electrical grid. We showed through several examples that,
despite this restriction, it is possible to get the micro-robots to
perform useful tasks. These tasks include meeting at the same
location, sequentially passing “information,” gathering close
together, and avoiding collision.

There are several opportunities for future work. For exam-
ple, in this paper we focused entirely on open-loop control.
These results could be extended to closed-loop control, includ-
ing a consideration of process noise, sensor uncertainty, and

the presence of obstacles in the environment. These results
could also be applied to other untethered micro-robots, such
as [2], or to the other applications mentioned in Section VI.
Finally, several of the motion planning problems raised in
Section IV remain to be solved.
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