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Abstract— This paper presents the Discrete Search Lead-
ing continuous eXploration (DSLX) planner, a multi-resolution
approach to motion planning that is suitable for challenging
problems involving robots with kinodynamic constraints. Initially
the method decomposes the workspace to build a graph that
encodes the physical adjacency of the decomposed regions. This
graph is searched to obtaineads, that is, sequences of regions that
can be explored with sampling-based tree methods to generate
solution trajectories. Instead of treating the discrete search
the adjacency graph and the exploration of the continuous state
space as separate componentfSLX passes information from
one to the other in innovative ways. Each lead suggests what
regions to explore and the exploration feeds back information
to the discrete search to improve the quality of future leads.
Information is encoded in edge weights, which indicate the Fig. 1. Example of benchmark “RandomSlantedWalls,” a kinodyioa
importance of including the regions associated with an edge in motion planning problem solved bPSLX two orders of magnitude faster
the next exploration step. Computation of weights, leads, and the than other tree-based motion planning methods. The robot niwdeht of a
actual exploration make the core loop of the algorithm. smooth car (see Section Ill-A). Red dots indicate projestiohthe states of

Extensive experimentation shows thaDSLX is very versatile. the exploration tree onto the workspace. The black lineciatgis the current
The discrete search can drastically change the lead to reflect lead that is used to guide the tree exploration toward thé goa
new information allowing DSLX to find solutions even when
sampling-based tree planners get stuck. Experimental results on
a variety of challenging kinodynamic motion planning problems
show computational speedups of two orders of magnitude over When compared to them.

ration of the state space, but displays a superior perfocean

other widely used motion planning methods. DSLX utilizes information provided by the problem speci-
fication and information gathered during previous expiorat
. INTRODUCTION steps to guide future explorations closer to obtaining atim

Robot motion planning with complex kinodynamic conto the given motion planning problem. This is a concept that
straints is a topic that has attracted a lot of recent atieijfil— has been studied before mainly in the context of sampling-
[5]. It is greatly motivated by the availability of new rolot based planners that construct roadmaps. For example, the
systems and the need to produce paths that respect theghysigginal Probabilistic Roadmap Method®RM) [11] uses the
constraints in the motion of the robotic systems and henge daformation of the connectivity of the samples to create enor
be translated into trajectories executed by the real plafo samples in parts of the space where connectivity is low. The
with minimum effort. Sampling-based tree planners, such a®rk in [12] uses nearest-neighbors information in the egint
Rapidly-exploring Random TreeRRT) [6], Expansive Space of PRMto define the utility of each sample in an information-
Tree EST) [7], and others [1]-[5], [8]-[10] have in recenttheoretic sense and only add to the roadmap those samples tha
years been widely successful in kinodynamic motion plagninincrease the overall entropy. The planners in [13] and [1s a
Such planners typically explore the state space using desingtilize information in the context oPRMto find appropriate
or a bidirectional tree [1]-[5], [7], [9], or multiple trees sampling strategies for different parts of the configuratio
as in the case of Sampling-based Roadmap of Tr8BF)( space. In contrast to roadmap methods, traditional treeeba
[10]. Recent books [1], [2] contain additional referencesl a methods such &RRT [6], ADDRRT [4], EST [7] rely on limited
descriptions of many successful sampling-based tree gtanninformation, such as distance metrics or simple heurigtics

Given the large amount of work on kinodynamic motioguide the exploration. Although the tree may advance quickl
planning and the dominant place of sampling-based tree pldowards its goal, if it gets stuck it becomes more and more
ners, a new planner for robots with kinodynamic constrainifficult to find promising directions for the exploration.
can be justified only if it offers significant advantages over DSLX is a tree-based planner that systematically uses the
previous work. This paper describBSL X, a multi-resolution information gathered during previous explorations stepgsead
approach that as other existing and highly successful sagapl future explorations toward increasingly promising direas.
based tree planners (e.qRRT, EST, SRT) uses tree explo- Initially, DSLX constructs a coarse-resolution representation



of the motion planning problem by obtaining a decompositioand less frequently sequences of coarse-grained regiams th
of the workspace. The decomposition is represented in terare associated with lower weights.
of a graph whose vertices are regions in the decompositionThrough extensive experimentation on a variety of kin-
and whose edges denote physical adjacency between diffe@tynamic motion planning problems it has been observed
regions.DSLX exploits the simple observation that any soluthat DSLX can focus the exploration on promising search
tion trajectory that connects the initial state to the gdates directions while able to radically change these directidns
corresponds to some coarse-grained sequence of neiggbotite information gathered during exploration suggests rothe
regions that starts and ends at regions associated with gnemising leads. This flexibility tends to prevent the metho
initial and goal states, respectively. Although the cosgatoes from getting stuck in the way that other sampling-based tree
not hold, a sequence of coarse-grained neighboring regems planners do. Extensive comparisons have been doneRRith
however serve as a guide to the exploration. [6], a more recent version dRRT called Adaptive Dynamic

The idea of using decompositions of the workspace, coRomain RRT (ADDRRT) [4], EST [7], and SRT [10] showing
figuration space and state space appear early in the motibatDSLX can be up to two orders of magnitude more efficient.
planning literature. Key theoretical results in motionrpiing  Fig. 1 shows one such case for kinodynamic motion planning
were obtained using decomposition based methods [15]. Sowieere DSLX finds solutions more thaih70 times faster than
of the first planners obtained decompositions of the workspahe single-tree based methods d@ftdtimes faster tharsRT.
into regions that were linked in a graph which was subse-This paper is organized as follows. Section Il describes
quently used to find a path. An extensive discussion of eafpLX in detail. Experiments and results are described in
exact and approximate cell decomposition methods can $ection Ill. Section IV discusses the experimental resartis
found in [15] (Chapters 5 and 6) and in [16]-[18]. Initiallyprovides insights into the reasons for the observed computa
only geometric planning was considered. More recently aponal efficiency ofDSLX. The paper concludes in Section V
proaches that deal with kinodynamic planning have appeamih a summary and directions for future work.
in the context of sampling-based methods [19]-[22]. Il DSLX

The decomposition graph is weighted and the initial weights ' o i .
are all set to a fixed value. The core part@BLX proceeds _ PSeudocode for the overall approach is given in Algorithm 1.
by repeating the following three steps until a solution isrfé "€ construction of the coarse-grained decomposition into
or a maximum amount of time has elapsed: neighboring regions is given in line 2 and described in

] ) ] Section 1I-A. The lead computation occurs in line 6 and is
1) Obtain a guide sequence, callettad by some discrete gescribed in Section 11-B. The other lines refer to the state

search method on the decomposition graph. ‘space exploration, which is described in Section II-C.
2) Explore the continuous state space for a short period

of time. DSLX attempts to extend the branches of Algorithm 1 Pseudocode fobSLX

an exploring tree from one region to its neighbor, as Input:

specified by the lead. W, geometric description of the workspace
3) Update the weights of the decomposition graph. The R m,o,t',orl‘ m%dd alnd ge?;,met,“c description of the robot

weight of an edge represents an estimation of how ¢ nital and goal specifications

. . . . . tmax € R”", upper bound on computation time
important the exploration of the regions it connects is  ; "c R>0 short time allocated to each exploration step
for the construction of solution trajectories. The weight

: . o
depends on the total time spent so far exploring, tl e o ARTCLOCKL

progress of the exploration in these regions and othey. ~ _ (V, E) < COARSEGRAINEDDECOMPOSITIONW)
quantities. The weights are updated after each explos. |NITEXI;LORATIONESTIMATES(G)

ration of a region to reflect the new information gathereds: 7 « exploration tree rooted at

during the most recent exploration. 5: while ELAPSEDTIMEL < tmax dO
- . . 6: [Ri,...,Ri,] < COMPUTELEAD(G, s, g)
A critical difference and advantage ®&ISLX over earlier 7. StarTCLOCK2

workspace decomposition methods is the close interactioh while ELAPSEDTIME2 < . do
of the discrete search and the continuous exploration arfi R;; < SELECTREGION([R;;, ..., Ri,])
the flexibility this interaction provides. The coarse-gead for several timeslo

Output: A solution trajectory oMl L if no solution is found

x « SELECTSTATEFROMREGION(R;;,)

representgtion can proyic[ﬁLX with many alternative Ieadg. 12; PROPAGATEFORWARD(T, , Ry, , Ri, .,

A central issue is which lead to choose from the possibl: if a solution is foundhen

combinatorially large number of possibilities. Since theight  14: return solution trajectory

estimates that bias the computation of leads are based en par UPDATEEXPLORATIONESTIMATES(G, [Riy, ..., Ri, ])

16: return NI L

tial information, it is important not to ignore leads asswed
with lower weights, especially during the early stages @& th ] N

exploration DSLX aims to strike a balance between greedy arftt Coarse-Grained Decomposition

methodical search by selecting more frequently sequenfces oThis paper uses a simple grid-based decomposition of the
coarse-grained regions that are associated with highegyhigei workspace. Even with this simple decompositi@®@§LX is



computationally efficient in solving challenging kinodynia Large values ofw;; are obtained when branches Gf
motion planning problems, as indicated by the experimeniglickly reach previously unexplored parts Bf and R; and
results in Section I1I-D. are thus indicative of promising leads. The accumulatea tim
The coarse-grained decomposition of the workspace praz.(i,7) is used to give a higher weight to those regions that
vides a simplified layer to the motion planning problemhave been explored less frequently. Initially, since ttisreo
As discussed in Section II-BDSLX uses the coarse-grainedexploration information available, each weight; is set to a
decomposition to compute general leads from the initiah®o t fixed value.
goal region. It is important to note thBBL X allows for agreat  2) Computation of leadsMany possible strategies can be
degree of flexibility on the decomposition of the workspdne. used to compute search directions. The computation of a lead
particular, sinceDSLX relies on information collected duringis essentially a graph searching algorithm and the liteeatn
exploration to determine which lead to select, it does nenevthis subject is abundant (see [23] for extensive refergnces
require that the decomposition be collision-free. Whenaegi  The combination of search strategies in this work aims to
that are occupied by obstacles are selected as part of tthe lgBiovide leads that are more frequently biased toward piamis
the exploration estimates will indicate that no progressima directions. However, random leads are also used, although
made. Consequently, such regions will be selected less dess frequently, as a way to correct for errors inherent with
less frequently. The use of better workspace decompositidhe estimates. The use of random leads is motivated by
(see [1], [2] for details on different decomposition methpd observations made in [10], [24], where random restarts and
may certainly further improve the computational efficiemfy random neighbors have been suggested as effective ways to
DSLX, since it will in general provide better search directionsinblock the exploration when tree plannersRiM get stuck.
CompPUTELEAD (line 6 of Algorithm 1) frequently re-
B. Coarse-Grained Leads turns the most probable sequence of edges/ifrom v(s)

The coarse-grained decomposition is used to obtain {8-v(9)- The probabilityp;; associated with(v;,v;) € £
quences of neighboring regions that provide promisingdealf computed by normalizing the weight;;, i.e., p;; =
for the state space exploration. A transition grapk= (V, E)  ii/ 2(v...,)cx Wke- The probability of a sequence of edges
is constructed based on the coarse-grained decomposkiodsathe_n defined as the product of the probabilities assatiate
described in Section II-A. Each vertex ¢ V is associated With its edges. The most probable edge sequence irom
with a regionR; of the coarse-grained decomposition and i v(¢) is the one with the highest probability. In order to
edge (v;,v;) € E indicates thatR; and R, are neighboring compute the most probable edge sequence as defined above

regions in the workspace decomposition. Lét) € V and using a shortest path algorithm, such as Dijkstra’s, theyhtei

v(g) € V be the two vertices whose corresponding regions a&ction used in the graph search is set-tdog(pi;) for

associated with the initial and goal statesndg, respectively. (i, v5) € E. ,
A lead is computed by searchirg for sequences of edges Almost as frequently, GMPUTELEAD returns the acyclic

from v(s) to v(g). A weight w;; associated with each edge>44€Nce of edges from(s) to v(g) with the highest sum

(v;,v;) € E is an estimate oDSLX on the importance of of edge weights. In order to compute such sequence using
inciuéling R; and R; as an edge in the leady; is updated Dijkstra’s shortest path algorithm, the weight functioredsn

after each exploration of?; and R;. Sequences of edgesthe grgph searchh IS Set Wy — Iwij ;or (ﬁi’vj)_ehE’ where
associated with higher weights are selected more frequentjmax enotes the maximum value for the weights.

since, according to current estimates such edge sequencé*sess frequently, OMPUTELEAD c_:omputes a random Se-
provide promising leads. quence of edges from(s) to v(g). This computation is carried

1) Computation ofv;;: The coverage(7, Ry) of a region out by using depth-first search, where the unvisited childre
17" )

Ry by the states of the tre# is estimated by imposing an are visited in a random order.
implicit uniform grid on R, and measuring the fraction ofc. Exploration

cells that contain at least the projection of one state ftbm
Let ¢(7, Ri) denote the coverage estimate®f by 7 at the

segiing f the curet exlrsion step and T 1) [ SIS (e 9, e soetie o ey g0
denote the new coverage estimate at the end of the exploral 9 y 9 9 9

18 explorar on is an fteative procer
Y -~ e exploration. The exploration is an iterative processe§
step. Thusa(7', Ry) = (T, Ry) — (T, Ry;) measures the 8-12). At each iteration a regioR; is selected from the
change in the coverage @, by 7 as a result of the current J

The exploration starts by rooting a trée at the specified

. S ! coarse-grained leadR},, ..., R; ] and explored for a short
exploration step. Then, the weight; is defined as period of time. The exploration aims to extend branche¥ of
wij = 0.5(c(T, Ry) + (T, R;))/t + €/tacc (i, 5), from R;, to R;,,. For this reason, several states are selected

from the states associated with, and are propagated forward
wheret is the computational time devoted to the exploratiotoward R; . , .
of R;, R; during the current exploration stefy..(i, j) is the SELECTREGION: Note that some regions i}, , ..., R;, ]
accumulated time over all explorations &, R;; ande is a may not contain any states froffi, since the branches ar
small normalization constant. have yet to reach such regions. Such regions are not coaedider



for selection, since they do not contain any states from whithe state variables are empirically determined based on the
to propagate forward, as required by lih2 of Algorithm 1. workspaces used for the experiments.
The objective is to select a nonempty regiddy, < 1) Kinematic Car KCar): The motion equations are =
[Ri,,...,Ri,] whose exploration cause® to grow closer wugcos(6);y = ugsin(6);0 = ugtan(uy)/L, where (x,y, 0)
to the goal. Since R,,,...,R;,] specifies a sequence ofis the car configurationy, andu, are the speed and steering
neighboring regions that end at the region associated Wwéh twheel controls;L is the distance between the front and rear
goal state, the order in which the regions appear in the leaxles. The speed and steering control are restrictedo<
provides an indication of how closE is to the goal. For this vy,.x = 1 and |uy| < ¥max = 7/4.
reasonDSLX prefers to select regions that appear toward the2) Smooth Car $Car ): The kinematic car model can be
end of [R;,, ..., R;, ] more frequently than regions that appeaextended to a second-order model by expressing the velocity
at the beginning. Preference is also given to regions that ha and steering anglé as differential equations of the accel-
been selected less frequently for exploration. The explora erationu, and the rotational velocity of the steering wheel
of such regions is vital in order to provide a balance between controls, as follows:: = wvcos(d); § = vsin(); § =
greedy and methodical search. This objective is achieved byan(¢)/L; v = ug; é = uy. The acceleration and rotational
selecting aregio®;, from [R;, ..., R;, ] based on the weight velocity of the steering wheel controls are restrictedig <
aj/n + (1 — @)/nsel(R;,), where0 < a < 1 is selected 0.0015vyax @nd[u;| < 0.0015¢ .
uniformly at random anchsel(R;;) is the number of times  3) Smooth Unicycle QUni ): The motion equations are
R;, has been selected for exploration. & = wcos(f); y = vsin(h); 0 = w;v = up; w = uy, where
SELECTSTATEFROMREGION: Each stater associated with (z,y, ) is the configurationiw andv are the rotational and
R;, is selected based on the weightnsel (), wherensel(z) translational velocities, respectively. The translatian and
is the number of times has been selected. Preference is thustational u; accelerations are restricted ta,| < 0.0015r
given to the states associated with, that have been selectedand |u;| < 0.0015r, wherer is the radius of the unicycle.

less frequently. A state € 7 is associated with regior;, 4) Smooth Differential Drive DDri ve): The motion
iff proj(x) € R;;, whereproj(x) denotes the projection of equations arei = 0.57(we + w,)cos(d); § = 0.5r(we +
the stater € 7 onto the workspacéV. wy)sin(f); 6 = r(w, — we)/L; &y = ug; W, = u1, Where

PROPAGATEFORWARD: A statex is propagated forward to (z,y,6) is the configurationw, and w, are the rotational
a new stater,,.,, by selecting a contral and applyingu to 2 velocities of the left and right wheels, respectivelyjs the
for several time steps or until a collision is found.df.,, is wheel radius; and. is the length of the axis connecting the
more than a minimum number of propagation steps away frarenters of the two wheels. In this work, the contralsand
z, thenz,., and the edge connectingto z,., is added to wu; are restricted tdug| < 0.15 and|u;| < 0.15.
7. The stater,,.., is also added to the appropriate regiBp.
Since the objective is to guide the propagation frm toward B. Benchmarks
the neighboring regiom®; . ,, the controlu is selected as the The benchmarks used in the experiments are designed to
control that bringsproj(znew) closer toR;,,, out of several vary in type and difficulty and to test different aspects of
controls sampled uniformly at random. The propagation motion planning methods. lllustrations of benchmarks and
computed by integrating the motion equations of the robagpbot geometries can be found in Fig. 1 and Fig. 2.
This work uses a fourth-order Runge-Kutta integrator [2], [ Benchmark “Misc” consists of several miscellaneous ob-
stacles arranged as in Fig. 2(a). Random queries are created
that place the robot in opposite corners of the workspace. In
The design ofDSLX was motivated by challenging kin- this way, the robot must wiggle its way through the various
odynamic motion planning problems with vehicles and thebstacles and the narrow passages in the workspace.
experiments in this paper were chosen to test the efficiehcy o Benchmark “WindingCorridors” consists of long and wind-
DSLX in solving such problems. The performance@SLX ing corridors, as shown in Fig. 2(b). Random queries are
is compared against several existing state-of-the-arhoast created by placing the robot in two different corridorsheit
Results presented in Section 11I-D show the competitiverés 4 and5 or 5 and4 (counting from left to right), respectively.
the proposed methodSLX, and highlight the benefits of in- This benchmark is chosen to illustrate the efficacy of motion
corporating discrete-search and coarse-grained decdtiopos planning methods in solving problems where even though the
into sampling-based approaches, as proposed in this workinitial and goal specification place the robot in neighbgrin
places in the workspace, the solution trajectory is ratheg|
A. Robot Models and the robot travels through a large portion of the workspac
The motions of the robot are defined by a set of ordinary Benchmark “RandomObstacles” consists of a large number
differential equations. The robot models used in this worf obstaclesq78 obstacles) of varying sizes placed at random
consist of a kinematic cakKCar ), a smooth (second-order) carthroughout the workspace, as shown in Fig. 2(c). The random
(SCar), smooth unicycle Uni ), and a smooth differential placement of the obstacles creates many narrow passages,
drive (SDDrx i ve). Detailed descriptions of these models caposing a challenging problem for motion planning methods,
be found in [1], [2]. The range of controls and bounds osince research [1], [2] has shown that many motion planners

Ill. EXPERIMENTS AND RESULTS



(a) Benchmark “Misc” robot (b) Benchmark “WindingCorriddr

(c) Benchmark “RandomObstacles” (d) Benchmark “Random8tialls”

Fig. 2. Several benchmarks used for the experimental comparsSLX. In each case, the robot geometry is a box and the workspaceni box. The
body length and width of the robot in benchmarks “RandomObetaand “RandomSlantedWalls” are 1/40 and 1/60, respdytilre the case of benchmarks
“Misc” and “WindingCorridors” the robot is twice the size tie one used in benchmarks “RandomObstacles” and “Randore8Watls,” since “Misc” and
“WindingCorridors” have in general more open areas and widessages.

have a tendency of getting stuck in such random environmentdn addition to single-tree versions, bidirectional versio
with narrow passages. Random queries place the robotoin RRT, ADDRRT, and EST also exist. It has also been
opposite sides of the workspace. shown thatSRT [10] takes the bidirectional search a step
Benchmark “RandomSlantedWalls” consists &) obsta- further and uses single-tree based methods sueiRasEST,
cles resembling slanted walls, as illustrated in Fig. ltidly, etc., to grow multiple trees in different regions of the stat
a random maze is created using the disjoint set strategyace and then connects the neighboring trees to obtain a
and then only97% of the maze walls are kept. Knockingsolution trajectory. Note that for nonholonomic problemeset
down of the maze walls creates multiple passages in tbennections however may contain gaps [1], [2]. Trajectorie
workspace for connecting any two points. The dimensiombtained byDSLX, RRT, ADDRRT, andEST do not contain any
of the remaining walls are set uniformly at random from thgaps, while trajectories obtained ISRT contain gaps. Such
interval [1/60,1/90] in order to create obstacles of differengaps could be closed using steering or numerical methods [26
sizes. Each of the remaining walls is rotated by some anglethe expense of incurring additional computational costs
chosen at random fror2°, 15°], so that the walls are aligned
at different angles. This benchmark tests the efficiency Bt Results

motion planning methods in finding solutions for problems For each benchmark, experiments are run using each of the
with multiple passages. Random queries place the robotfhot models described in Section IlI-A. For each comborati
opposite sides of the workspace. of benchmark and robot moded) random queries are gen-
erated as described in Section IlI-B. Each motion planning
method is then used to solve all the input random queries. In
This work presents comparisons WRRT [2], [6], ADDRRT each instance, the computational time required to solve the
[4], EST [7], and SRT [10]. Standard implementations werequery is measured. Rice PBC and Cray XD1 ADA clusters
followed as suggested in the respective research papers wede used for code development. Experiments were run on
motion planning books [2], [6]. These implementationsizeil ADA, where each of the processors runs at 2.2GHz and has
the OOPS-MP (Online Open-source Programming System fagp to 8GB of RAM.
Motion Planning) framework [25] and are well-tested, rdbus Table | contains a summary of the experimental results.
and efficient, as they have been widely used by our reseafetr each benchmark and robot model combination, the table
group. Every effort was made to fine-tune the performanaadicates the average computational time required by eaech m
of these motion planners for the experimental comparisotisn planning method to solv&) random queries. In addition,
presented in this paper. Table | indicates the computational speedup obtaineDSiyX

C. Other Motion Planning Methods used in Comparisons



in comparison to the other motion planning methods used nmay remain stuck for some time [1], [2], [4], [10]. Adjusting
the experiments of this work. The experimental comparisottse exploration step size ®RT, as ADDRRT does, has been
of DSLX with the single-tree methods are summarized ishown to alleviate the problem to a certain extent but not
Table | (columns 1-3), while the comparisons with the multin all situations [4]. The use oADDRRT incurs additional
tree methodSRT are summarized in Table | (column 4). computational costs, which in some cases, as those obsarved
1) Comparison with the single-tree methodsble | shows this work, outweigh the benefits offered BIPDRRT. However,
that DSLX is consistently more efficient thaRRT, ADDRRT, both in the case oRRT and ADDRRT, as the tree grows
and EST. For each benchmark and robot model combinatiolarge, it becomes more frequent for the nearest neighbors
the average time required to solve a query is consideraltity random states not to be at the frontier of the tree but
lower for DSLX. instead at “inner” nodes of the tree. Consequently, eslhecia
When the simple kinematic car modéKCar ) is used, in challenging problems where propagation is difficult,sihe
DSLX is between3—12 times faster on “Misc.”;9-13 on methods end up exploring the same region many times, thus
“WindingTunnels”; 3-10 on “RandomObstacles”; angB—29 wasting computational time.
times faster on “RandomSlantedWalls.” EST [7] on the other hand suffers from a different kind of
When the other robot models are us®&8LX is between problem.EST directs the search toward less explored regions
7—32 times faster on “Misc.,”;9-29 on “WindingTunnels”; of the state space. As the tree grows large, the growth of
36—69 on “RandomObstacles”; anthh2—255 times faster on the tree slows down as there are many regions with similar
“RandomSlantedWalls.” low density distributions. ConsequentiST ends up slowly
2) Comparison with the multi-tree meth@®RT: The best expanding the tree in all possible directions, which do not
computational times foBRT are obtained when several treesecessarily bring the exploration closer to the goal region
are also grown in other parts of the state space in addition toSRT [10] approaches the above problems by using multiple
the trees grown at the initial and goal states. The commutali trees in randomly selected regions of the state space agd onl
times obtained byRT tend to be lower than the computationagrowing each tree for a shorter period of time to avoid the
times required by the bidirectional versionsRRT, ADDRRT, slow down on the growth of the treeSRT is however not
and EST. Recall that, as discussed in Section 1lI-C, thearticularly well suited for nonholonomic motion planning
trajectories computed b$RT contain gaps, while trajectoriesproblems, since tree connections create gaps that mayeequi
computed byDSL X do not contain any gaps. Results indicatedonsiderable additional computational time to be closé. [2
in Table | are obtained whe8RT grows 75 trees usingeST Although these methods have been shown to work well
as its building block. Similar results were obtained wiRlT  in a variety of settings, the main drawback common to all
is used as a building block @RT. these methods is that they only use a limited amount of
As indicated in Table I, DSLX is in each case computa-information to guide the exploration. There is generallycinu
tionally faster tharSRT. The computational speedup BELX more information available to motion planning methods ,that
varies from a factor 08—10 on the easier problems to a factoif properly used, can significantly speed up the computation
of 48-90 times on the more challenging problems. The main strength ofDSLX is the systematic use of
information gathered during previous explorations steps t
guide future explorations. As detailed in Section DSLX
Experimental results presented in Table | indicate thaikes into account all the available workspace information
DSLX offers considerable computational advantages over ttie initial and goal specifications, and carefully and dipse
other motion planning methods used in this work acrossimtegrates the information gathered during exploraticio i
variety of challenging benchmarks and robot models. Thiscrete search and exploration of the state space. Theetdisc
experimental results show th&SLX is capable of solving search provide®SLX with leads that guide the exploration
challenging motion planning methods in a matter of one toser to the goal specification. The exploration of theestat
three minutes as opposed to several hours required by otpace provides valuable feedback information that is used
methods DSLX computationally outperforms powerful motionby DSLX to refine the lead for the next exploration step.
planning methods, such &RT, ADDRRT, EST, andSRT, by As the exploration progresses, the leads produce®®iyX
an order of magnitude on easy problems and as much as twazome more accurate and thus cause the tree to reach the goal
orders of magnitude on more challenging problems. specification. Fig. 3 provides a snapshot of the exploration
The understanding of the main reasons for the success afane by DSLX at different time intervals. The tree quickly
motion planning method is in general a challenging issue agebws and reaches the goal in a short amount of time.
subject of much research. This section takes a closer look
at the exploration done b{RRT, ADDRRT, EST, and SRT V. DISCUSSION
and compares it to the exploration done B$LX in order We have presente®SLX, a tree-based motion planning
to provide some insights behind the computational effigienenethod that relies on a decomposition of the workspace to
of DSLX. obtain a coarse-grained representation of the motion pignn
By using nearest neighbors to random states as exploratfpblem and discrete search to find promising leads thagbrin
points,RRT [2], [6] is frequently led toward obstacles where ithe tree exploration closer to the goal. Information gagtler

IV. A CLOSERLOOK AT THE STATE SPACE EXPLORATION



TABLE |
SUMMARY OF EXPERIMENTAL COMPARISONS WITHSINGLE- AND MULTIPLE-TREE METHODS

Average time in seconds to solve one query Speedup Obtained bpSLX
RRT ADDRRT EST SRT DSLX RRT ADDRRT EST SRT
“Misc”
KCar 3.51 5.87 135 3.12 1.02 3.45 5.76 12.91 3.06
SCar 248.72 279.05 95.84 70.52 13.27 18.74 21.02 7.22 5.31
SUni 417.06 461.42 151.63 144.23 14.14 29.50 32.64 10.73 10.20
SDDr i ve 73.82 94.36 47.82 34.04 4.52 16.35 20.89 10.59 7.54
“WindingTunnels”
KCar 15.33 19.29 22.94 12.21 1.70 9.03 11.37 13.52 7.18
SCar 282.49 231.11 90.76 92.32 9.46 29.85 24.42 9.59 9.75
SUni 161.16 175.92 83.14 106.73 8.57 18.21 20.53 9.70 12.45
SDDr i ve 178.10 213.35 142.59 108.75 7.60 23.43 28.06 18.76 14.30
“RandomObstacles”
KCar 3.46 5.87 13.15 1.21 0.97 3.55 7.12 10.72 1.24
SCar 440.52 528.62 831.36 22164 1194 36.90 44.28 69.65 18.56
SUni 374.34 413.43 562.70 232.80 9.26 40.43 44.66 60.78 25.14
SDDri ve 224.60 276.55 269.02 125.63 4.22 53.27 65.60 63.81 29.77
“RandomSlantedWalls”
KCar 29.22 33.21 36.86 27.31 1.23 23.69 26.92 29.89 22.20
SCar 6330.95 6637.62 3716.27 1772.34 36.43 173.79 182.21 102.01 48.60
SUni 7207.27 6571.33  4819.99 2536.24 28.17 255.83 233.26 171.09 90.03
SDDr i ve 615.56 579.35 478.36 240.01 3.64 169.26 159.31 131.54 65.93
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(d) Exploration of benchmark “RandomSlantedWalls” after 62s, 18s, 24s of running time

Fig. 3. Snapshots of the tree exploration BLX of different benchmarks with the smooth c&GCar ) as the robot model. Red dots indicate projections
of the states of the exploration tree onto the workspace.dgrben line in each figure indicates the current lead.




during exploration is used to further refine the discretecea [9]
and improve the quality of future explorationBSLX was
shown to offer considerable computational advantages OYES]
other methods across a variety of kinodynamic motion plan-
ning problems. Experimental results indicated tB&LX is
capable of solving challenging motion planning probleme thll]
orders of magnitude faster than other widely used motion
planning methods.

The combination of coarse-grained representation, d'escr[alz]
search, and continuous exploration in the frameworR@®If X [13]
results in an effective motion planner that allocates most
of the available computational time to the exploration of
the parts of the state space that lead to a solution for a
given motion planning problem. This combination raises ynart!4!
interesting research issues, such as finding the best vamé&sp
decomposition for a motion planning problem, improving
the discrete search, continuous exploration, and intieract (15!
between the different components, that we intend to inyatti
in future research. We are currently investigating extamsio
the theoretical framework developed in [27] to analypgt X.  [17]
Furthermore, we would like to apply and extend the framework
of DSLX to increasingly challenging and high-dimensiongls]
problems in motion planning and other settings, such as
hybrid-system testing [28]. As we address these challengipg
problems, it becomes important to extend the framework, [29]
[30] to obtain an effective distribution dDSLX that makes

, X 20
use of all the available computational resources. [20]
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