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Abstract— GP-BayesFilters are a general framework for inte-
grating Gaussian process prediction and observation models into
Bayesian filtering techniques, including particle filters and ex-
tended and unscented Kalman filters. GP-BayesFilters learn non-
parametric filter models from training data containing sequences
of control inputs, observations, and ground truth states. The need
for ground truth states limits the applicability of GP-BayesFilters
to systems for which the ground truth can be estimated without
prohibitive overhead. In this paper we introduce GPBF-LEARN,
a framework for training GP-BayesFilters without any ground
truth states. Our approach extends Gaussian Process Latent
Variable Models to the setting of dynamical robotics systems.
We show how weak labels for the ground truth states can be
incorporated into the GPBF-LEARN framework. The approach
is evaluated using a difficult tracking task, namely tracking a
slotcar based on IMU measurements only.

I. INTRODUCTION

Over the last years, Gaussian processes (GPs) have been
applied with great success to robotics tasks such as reinforce-
ment learning [3] and learning of prediction and observation
models [5, 16, 8]. GPs learn probabilistic regression models
from training data consisting of input-output examples [17].
GPs combine extreme modeling flexibility with consistent
uncertainty estimates, which makes them an ideal tool for
learning of probabilistic estimation models in robotics. The
fact that GP regression models provide Gaussian uncertainty
estimates for their predictions allows them to be seamlessly
incorporated into filtering techniques, most easily into particle
filters [5, 16].

GP-BayesFilters are a general framework for integrating
Gaussian process prediction and observation models into
Bayesian filtering techniques, including particle filters and
extended and unscented Kalman filters [9, 7]. GP-BayesFilters
learn GP filter models from training data containing sequences
of control inputs, observations, and ground truth states. In
the context of tracking a micro-blimp, GP-BayesFilters have
been shown to provide excellent performance, significantly
outperforming their parametric Bayes filter counterparts. Fur-
thermore, GP-BayesFilters can be combined with parametric
models to improve data efficiency and thereby reduce compu-
tational complexity [7]. However, the need for ground truth
training data requires substantial labeling effort or special
equipment such as a motion capture system in order to
determine the true state of the system during training [8].
This requirement limits the applicability of GP-BayesFilters
to systems for which such ground truth states are readily
available.

The need for ground truth states in GP-BayesFilter training
stems from the fact that standard GPs only model noise
in the output data, input training points are assumed to be
noise-free [17]. To overcome this limitation, Lawrence [11]
recently introduced Gaussian Process Latent Variable Mod-
els (GPLVM) for probabilistic, non-linear principal compo-
nent analysis. In contrast to the standard GP training setup,
GPLVMs only require output training examples; they de-
termine the corresponding inputs via optimization. Just like
other dimensionality reduction techniques such as principal
component analysis, GPLVMs learn an embedding of the
output examples into a low-dimensional latent (input) space.
In contrast to PCA, however, the mapping from latent space to
output space is not a linear function but a Gaussian process.
While GPLVMs were originally developed in the context
of visualization of high-dimensional data, recent extensions
enabled their application to dynamic systems [4, 21, 19, 12].

In this paper we introduce GPBF-LEARN, a framework
for learning GP-BayesFilters from partially or fully unlabeled
training data. The input to GPBF-LEARN are temporal se-
quences of observations and control inputs along with partial
information about the underlying state of the system. GPBF-
LEARN proceeds by first determining a state sequence that
best matches the control inputs, observations, and partial
labels. These states are then used along with the control and
observations to learn a GP-BayesFilter, just as in [7]. Partial
information ranges from noisy ground truth states, to sparse
labels in which only a subset of the states are labeled, to
completely label-free data. To determine the optimal state
sequence, GPBF-LEARN extends recent advances in GPLVMs
to incorporate robot control information and probabilistic
priors over the hidden states.

We demonstrate the capabilities of GPBF-LEARN using
the autonomous slotcar testbed shown in Fig. 1. The car
moves along a slot on a race track while being controlled
remotely. Position estimation is performed based on an inertial
measurement unit (IMU) placed on the car. Note that tracking
solely based on the IMU is difficult, since the IMU provides
only turn information. Using this testbed, we demonstrate that
GPBF-LEARN outperforms alternative approaches to learning
GP-BayesFilters. We furthermore show that GPBF-LEARN
can be used to automatically align multiple demonstration
traces and learn a filter from completely unlabeled data.

This paper is organized as follows. After discussing related
work, we provide background on Gaussian process regression,
Gaussian process latent variable models, and GP-BayesFilters.



Then, in Section IV, we introduce the GPBF-LEARN frame-
work. Experimental results are given in Section V, followed
by a discussion.

II. RELATED WORK

Lawrence [11] introduced Gaussian Process Latent Vari-
able Models (GPLVMs) for visualization of high-dimensional
data. Original GPLVMs impose no smoothness constraints on
the latent space. They are thus not able to take advantage
of the temporal nature of dynamical systems. One way to
overcome this limitation is the introduction of so-called back-
constraints [13], which have been applied successfully in
the context of WiFi-SLAM, where the goal is to learn an
observation model for wireless signal strength data without
relying on ground truth location data [4].

Wang and colleagues [21] introduced Gaussian Process Dy-
namic Models (GPDM), which are an extension of GPLVMs
specifically aimed at modeling dynamical systems. GPDMs
have been applied successfully to computer animation [21] and
visual tracking [19] problems. However, these models do not
aim at tracking the hidden state of a physical system, but rather
at generating good observation sequences for animation. They
are thus not able to incorporate control input or information
about the desired structure of the latent space. Furthermore, the
tracking application introduced by Urtasun and colleagues [19]
is not designed for real-time or near real-time performance,
nor does is provide uncertainty estimates as GP-BayesFilters.
Other alternatives for non-linear embedding in the context of
dynamical systems are hierarchical GPLVMs [12] and action
respecting embeddings (ARE) [1]. None of these techniques
are able to incorporate control information or impose prior
knowledge on the structure of the latent space. We consider
both capabilities to be extremely important for robotics appli-
cations.

The system identification community has developed various
subspace identification techniques [14, 20]. The goal of these
techniques is the same as that of GPBF-LEARN, namely
to learn a model for a dynamical system from sequences
of control inputs and observations. The model underlying
N4SID [20] is a linear Kalman filter. Due to its flexibility and
robustness, N4SID is extremely popular. It has been applied
successfully for human motion animation [6]. In our experi-
ments, we demonstrate that GPBF-LEARN provides superior
performance due to its ability to model non-linear systems.
We also show that N4SID provides excellent initialization for
GPLVMs for dynamical systems.

III. PRELIMINARIES

This section provides background on Gaussian Processes
(GPs) for regression, their extension to latent variable models
(GPLVMs), and GP-BayesFilters, which use GP regression to
learn observation and prediction models for Bayesian filtering.

A. Gaussian Process Regression

Gaussian processes (GP) are non-parametric techniques for
learning regression functions from sample data [17]. Assume

we have n d-dimensional input vectors: X = [X1,Xa2, ..., Xp]-
A GP defines a zero-mean, Gaussian prior distribution over
the outputs y = [y1, Y2, ..., Y] at these values ':

ply | X) =N(y; 0, K, + 021), (1)

The covariance of this Gaussian distribution is defined via a
kernel matrix, K, and a diagonal matrix with elements ai
that represent zero-mean, white output noise. The elements of
the n x n kernel matrix K, are specified by a kernel function
over the input values: K, [i, j] = k(x;,x;). By interpreting the
kernel function as a distance measure, we see that if points x;
and x; are close in the input space, their output values y; and
y; are highly correlated.

The specific choice of the kernel function k& depends on
the application, the most widely used being the squared
exponential, or Gaussian, kernel:

k(x,x') = 0? e~ 3 (X)W (x—x)" )

The kernel function is parameterized by W and oy. The
diagonal matrix W defines the length scales of the process,
which reflect the relative smoothness of the process along the
different input dimensions. JJ% is the signal variance.

Given training data D = (X,y) of n input-output pairs, a
key task for a GP is to generate an output prediction at a test
input x,. It can be shown that conditioning (1) on the training
data and x, results in a Gaussian predictive distribution over
the corresponding output ¥,

p(ys | x4, D) = N (y«, GP, (x4, D), GPyx (x4, D))  (3)
with mean
GP, (x., D) = k;[K +o31] "y @)
and variance
QPs; (x,, D) = k(xx.) — K7 [K + 021 koo (5)

Here, k. is a vector of kernel values between x, and the
training inputs X: k,[i] = k(X.,X;). Note that the prediction
uncertainty, captured by the variance GPy, depends on both
the process noise and the correlation between the test input
and the training inputs.

The hyperparameters 6, of the GP are given by the pa-
rameters of the kernel function and the output noise: 8, =
(on,W,of). They are typically determined by maximizing
the log likelihood of the training outputs [17]. Making the
dependency on hyperparameters explicit, we get

0, = argemax log p(y | X, 80,). (6)
Y
The GPs described thus far depend on the availability of fully
labeled training data, that is, data containing ground truth input
values X and possibly noisy output values y.

IFor ease of exposition, we will only describe GPs for one-dimensional
outputs, multi-dimensional outputs are handled by assuming independence
between the output dimensions.



B. Gaussian Process Latent Variable Models

GPLVMs were introduced in the context of visualization
of high-dimensional data [10]. GPLVMs perform nonlinear
dimensionality reduction in the context of Gaussian processes.
The underlying probabilistic model is still a GP regression
model as defined in (1). However, the input values X are not
given and become latent variables that need to be determined
during learning. In the GPLVM, this is done by optimizing
over both the latent space X and the hyperparameters:

(X*,8,) = argmax log p(Y | X, 8,) @)
X,0,
This optimization can be performed using scaled conjugate
gradient descent. In practice, the approach requires a good
initialization to avoid local maxima. Typically, such initializa-
tions are done via PCA or Isomap [11, 21].

The standard GPLVM approach does not impose any con-
straints on the latent space. It is thus not able to take advantage
of the specific structure underlying dynamical systems. Recent
extensions of GPLVMs, namely Gaussian Process Dynamical
Models [21] and hierarchical GPLVMs [12], can model dy-
namic systems by introducing a prior over the latent space
X, which results in the following joint distribution over the
observed space, the latent space, and the hyperparameters:

p(vayeyaect) :p(Y | X,Hy)p(x | ex)p(oy)p(euL) (3

Here, p(Y | X, 8,) is the standard GPLVM term, p(X | 8,) is
the prior modeling the dynamics in the latent space, and p(0,))
and p(6,,) are priors over the hyperparameters. The dynamics
prior is again modeled as a Gaussian process

p(X|60;) =N (X;0,K, + 0p,1), 9)

where K, is an appropriate kernel matrix. In Section IV,
we will discuss different dynamics kernels in the context of
learning GP-BayesFilters. The unknown values for this model
are again determined via maximizing the log posterior of (8):

(X*,8,,0;) = argmax (logp(Y | X,0,) +

X,0,,0
logp(X | 6,) +logp(6,) +log p(6.,) ) (10)

Such extensions to GPLVMs have been used successfully to
model temporal data such as motion capture sequences [21,
12] and visual tracking data [19].

C. GP-BayesFilters

GP-BayesFilters are Bayes filters that use GP regression to
learn prediction and observation models from training data.
Bayes filters recursively estimate posterior distributions over
the state x; of a dynamical system at time ¢ conditioned
on sensor data z;., and control information uj;.;_;. Key
components of every Bayes filter are the prediction model,
p(X¢ | X¢—1,us—1), and the observation model, p(z; | x;). The
prediction model describes how the state x; changes based
on time and control input u;_1, and the observation model
describes the likelihood of making an observation z; given

the state x;. In robotics, these models are typically parametric
descriptions of the underlying processes, see [18] for several
examples.

GP-BayesFilters use Gaussian process regression models for
both prediction and observation models. Such models can be
incorporated into different versions of Bayes filters and have
been shown to outperform parametric models [7]. Learning the
models of GP-BayesFilters requires ground truth sequences of
a dynamical system containing for each time step a control
command, u;_;, an observation, z;, and the corresponding
ground truth state, x;. GP prediction and observation models
can then be learned based on training data

Dp = <(X,U),X’>
Do = <X’ Z> )

where X is a matrix containing the sequence of ground truth
states, X = [x1,X2,...,X7], X' is a matrix containing the
state changes, X’ = [x2 — X1,X3 — X2,...,XT — X7_1], and
U and Z contain the sequences of controls and observations,
respectively. By plugging these training sets into (4) and (5),
one gets GP prediction and observation models mapping from
a state, x;_1, and a control, u;_1, to change in state, x; —x;_1,
and from a state, x, to an observation, z;, respectively. These
probabilistic models can be readily incorporated into Bayes
filters such as particle filters and unscented Kalman filters.
An additional derivative of (4) provides the Taylor expansion
needed for extended Kalman filters [7].

The need for ground truth training data is a key limitation
of GP-BayesFilters and other applications of GP regression
models in robotics. While it might be possible to collect
ground truth data using accurate sensors [7, 15, 16] or manual
labeling [5], the ability to learn GP models based on weakly
labeled or unlabeled data significantly extends the range of
problems to which such models can be applied.

IV. GPBF-LEARN

In this section we show how GP-BayesFilters can be learned
from weakly labeled data. While the extensions of GPLVMs
described in Section III-B are designed to model dynami-
cal systems, they lack important abilities needed to make
them fully useful for robotics applications. First, they do not
consider control information, which is extremely important
for learning accurate prediction models in robotics. Second,
they optimize the values of the latent variables (states) solely
based on the output samples (observations) and GP dynamics
in the latent space. However, in state estimation scenarios,
one might want to impose stronger constraints on the latent
space X. For example, it is often desirable that latent states
x; correspond to physical entities such as the location of a
robot. To enforce such a relationship between latent space and
physical robot locations, it would be advantageous if one could
label a subset of latent points with their physical counterparts
and then constrain the latent space optimization to consider
these labels.



We now introduce GPBF-LEARN, which overcomes limi-
tations of existing techniques. The training data for GPBF-
LEARN, D = [Z, U, X], consists of time stamped sequences
containing observations, Z, controls, U, and weak labels, X,
for the latent states. In the context discussed here, the labels
provide noisy information about subsets of the latent states.
Given training data D, the posterior over the sequence of
hidden states and hyperparameters is as follows:

p(X79I702 l Z7U,§i) 08
p(Z | X,6.) p(X | U,8,) p(X | X) p(6.)p(6,) (11)

In GPBF-LEARN, both the observation model, p(Z |
X, 0.), and the prediction model, p(X | U, 8,,), are Gaussian
processes, and 0, and 6, are the hyperparameters of these
GPs. While the observation model in (11) is the same as in
the GPLVM for dynamical systems (8), the prediction GP now
includes control information. Furthermore, the GPBF-LEA/I}N
posterior contains an additional term for labels, p(X | X),
which we describe next.

A. Weak Labels

The labels X represent prior knowledge about individual
latent states X. For instance, it might not be possible to
generate highly accurate ground truth states for every data
point in the training set. Instead, one might only be able
to provide accurate labels for a small subset of states, or
noisy estimates for the states. At the same time, such labels
might still be extremely valuable since they guide the latent
variable model to determine a latent space that is similar to the
desired, physical space. While the form of prior knowledge can
take on various forms, we here consider labels that represent
independent Gaussian priors over latent states:

H N(Xﬁfit,(’g{t)

#%,eX

p(X|X) = (12)

Here, a,%t is the uncertainty in label X;. As note above, X can

impose priors on all or any subset of latent states. As we will
show in the experiments, these additional terms generate more
consistent tracking results on test data.

B. GP Dynamics Models

GP dynamics priors, p(X | U, 8,), do not constrain indi-
vidual states but model prior information of how the system
evolves over time. They provide substantial flexibility for
modeling different aspects of a dynamical system. Intuitively,
these priors encourage latent states X that correspond to
smooth mappings from past states and controls to future states.
Even though the dynamics GP is an integral part of the
posterior model (11), for exposure reason it is easier to treat
it as if it was a separate GP.

Different dynamics models are achieved by changing the
specific values for the input and output data used for this
dynamics GP. We denote by X'™ and X°" the input and output
data for the dynamics GP, where X" is typically derived from
states at specific points in time, and X°' is derived from

states at the next time step. To more strongly emphasize the
sequential aspect of the dynamics model we will use time ¢
to index data points. Using the GP dynamics model we get

p(X|U,0,) = N(X:0, K, + 02T) , (13)

where af, is the noise of the prediction model, and the kernel
matrix K is defined via the kernel function on input data to
the dynamics GP: K [t, '] = k (x{*, xI), where x{* and x}?
are input vectors for time steps t and ', respectively.

The specification of X'™ and X°"* determines the dynamics
prior. To see, consider the most basic dynamics GP, which
solely models a mapping from the state at time ¢ — 1, x;_1,
to the state at time ¢, x;. In this case we get the following
specification:

xitn X1

(14)
x‘,?Ut = X (15)

Optimization with such a dynamics model encourages smooth
state sequences X. Generating smooth velocities can be
achieved by setting xit’f1 to X; 1 and x?" to x4, where x;
represents the velocity [x; — x;—1] at time ¢ [21]. It should
be noted that such a velocity model can be incorporated
without adding a velocity dimension to the latent space. A
more complex, localized dynamics model that takes control
and velocity into account can be achieved by the following
settings:

[x¢—1, %1, u—1]" (16)
xP = %y 17)

This model encourages smooth changes in velocity depending
on control input. By adding x;_; to xi*, the dynamics model
becomes localized, that is, the impact of control on velocity
can be different for different states. While one could also
model higher order dependencies, we here stick to the one
given in (17), which corresponds to a relatively standard
prediction model for Bayes filters.

C. Optimization

Just as regular GPLVM models, GPBF-LEARN determines
the unknown values of the latent states X by optimizing
the log of posterior over the latent state sequence and the
hyperparameters. The log of (11) is given by

Ing(Xaowaoz | D) =
logp(Z | X,0.) +1logp(X | U, 80,) +
logp(X | X) +log p(8.) + log p(6,) + const , (18)

where D represents the training data [Z, U, )A(] We perform
this optimization using scaled conjugate gradient descent [21].
The gradients of the log are given by:

610gp(X70I702 | ZaU)

oX
dlogp(Z | X,0,)  Ologp(X|U,0,) 0Jlogp(X| X)f19)
X X X ‘
dlogp(X, 04,60, | D) _ dlogp(X | U, 0,) n dlogp(02) 20)
00, 00, 00,
dlogp(X,6,,0. | D) _ dlogp(Z | X,0.) n dlogp(6>) @1
00 00. 2.



Algorithm GPBF-LEARN (Z, U, X):

I ifX#£0) R
X =X
else
X .= N4SID,(Z, U)
2. (X*,0%,0°) = SCG_optimize (1ogp(x, 6.,0. | Z,U,fc))
GPBF := Learn_gpbf(X*, U, Z)

return GPBF

TABLE I
THE GPBF-LEARN ALGORITHM.

The individual derivatives follow as

alogp(z ‘ X,GZ) . 1 —1 trr—1 —1 8KZ
X = 2trace (KZ 77’K, - K, ) X
Odlogp(Z|X,0:) 1 Aryrptpe—1 -1\ 9Kz
00, = 2trace (KZ 77’K, - K, ) 0.
Ologp(X 6,,U) _ 1 —1 T go—1 -1\ 0Kx
— X = itmce (KX XowtXout Kx — Kx ) X
- 0Xou
_lexout BX i
Ologp(X ‘ 0.,U) _ 1 -1 T —1 -1
0. = Strace (Kx'XouXJuKy' —Kx') o
dlogp(X | )A() R 2
SRR - (X[, ] - X 2
X (X[i. ] - X, 1) /o,
where g—% and %—Ig are the matrix derivatives. They are formed

by taking the partial derivative of the individual elements of
the Gram matrix with respect to X or the hyperparameters,
respectively.

D. GPBF-LEARN Algorithm

A high level overview of the GPBF-LEARN algorithm
is given in Table I. The input to GPBF-LEARN consists
of training data containing a sequence of observations, Z,
control inputs, U, and weak labels, X. In the first step, the
unknown latent states X are initialized using the information
provided by the weak labels. This is done by setting every
latent state to the estimate provided by X. In the sparse
labeling case, the states without labels are initialized by linear
interpolation between those for which a label is given. In the
fully unsupervised case, where X is empty, we use N4SID
to initialize the latent states [20]. In our experiments, N4SID
provides initialization that is far superior to the standard
PCA initialization used by [11, 21]. Then, in Step 2, scaled
conjugate gradient (SCG) descent determines the latent states
and hyperparameters via optimization of the log posterior (18).
This iterative procedure computes the gradients (19) — (21)
during each iteration using the dynamics model and the weak
labels. Finally, the resulting latent states X*, along with the
observations and controls are used to learn a GP-BayesFilter,
as described in Section III-C.

In essence, the final step of the algorithm “compiles” the
complex latent variable model into an efficient, online GP-
BayesFilter. The key difference between the filter model and
the latent variable model is due to the fact that the filter model

makes a first order Markov assumption. The latent variable
model, on the other hand, optimizes all latent points jointly
and these points are all correlated via the GP kernel matrix.
To reflect the difference between these models, we learn new
hyperparameters for the GP-BayesFilter.

V. EXPERIMENTS

In these experiments we evaluate different properties of
GPBF-LEARN using the computer controlled slotcar platform
shown in Fig. 1. Specifically, we demonstrate the ability of
GPBF-LEARN to incorporate prior knowledge over the latent
states, to learn robust GP-BayesFilters from noisy and sparse
labeled data, and to perform system identification without any
ground truth states.

In an additional experiment not reported here, we compared
the two dynamics models described in Section IV-B. Using 10-
step ahead prediction as evaluation criteria, we found that our
control based model (17) significantly outperforms the simpler
model (15) that is typically used for GPLVMs. In fact, our
model reduces the prediction error by almost 50%, from 29.2
to 16.1 cm.

0K x A. Slotcar evaluation platform

The experimental setup consists of a track and a miniature
car which is guided along the track by a groove, or slot,
cut into the track. The left panel in Fig. 1 shows the track,
which contains elevation changes as well as banked curves
with a total length of about 14m. An overhead camera tracks
the car and is used as ground truth data for evaluation
of the algorithms. The car is a standard 1:32 scale model
manufactured by Carrera International and augmented with
a Microstrain 3DM-GX1 inertial measurement unit (IMU), as
shown in the next panel in Fig. 1. The IMU tracks the relative
orientation of the car. These measurements are sent off-board
in real-time via a WiFi interface. Control signals to the car
are supplied by an offboard computer. These controls signals
are directly proportional to the amperage supplied the the car
motor.

The data, (Z, U), is collected at 15 frames per second. From
the IMU data, we extract the 3D orientation of the car in Euler
angles. During the evaluations, we take the difference between
consecutive angle readings as the observation data Z. The
raw angles could potentially be used as observations as well.
However, even though this might make tracking and system
identification easier over short periods of time, we observed
substantial IMU angle drift and thus decided to use a more
realistic scenario that does not depend on a global heading
sensor. As can be seen in the third panel in Fig. 1, the resulting
turning rate data is very noisy and includes substantial amounts
of aliasing, in which the same angle measurements occur at
many different locations on the track. For instance, all angle
differences are close to zero whenever the car moves through
a straight section of the track. This kind of aliasing makes
learning the latent space particularly challenging since it does
not provide a unique mapping from the observation sequence
Z to the latent space X.



Fig. 1.
along a slot in the track, velocity control is provided remotely by a desktop PC. The state of the vehicle is estimated based on an on-board IMU. (right
middle) IMU turning rate in roll, pitch, and yaw. Shown is data collected over two rounds around the track. (right) Control inputs for the same run.

In all experiments we use a GP-UKF to generate tracking
results [9]. In the first set of experiments we demonstrate
that GPBF-LEARN can learn a latent (state) space X that
is consistent with a desired latent space specified via weak
labels X. Here, the desired latent space is the 1D position of
the car along the track. In this scenario, we assume that the
training data contains noisy or sparse labels X, as below.

B. Incorporating noisy labels

Here we consider the scenario in which one is not able to
provide extremely accurate ground truth states for the training
data. Instead, one can only provide noisy labels X for the
states. We evaluate four possible approaches to learning a
GP-BayesFilter from such data. The first, called INIT, simply
ignores the fact that the labels are noisy and learns a GP-
BayesFilter using the initial data X. The next two use the noisy
labels to initialize the latent variables X, but performs opti-
mization without the weak label terms described in Section IV-
A. We call this approach GPDM, since it results from applying
the model of Wang et.al. [21] to this setting. We do this with
and without the use of control data U in order to distinguish
the contributions of the various components. Finally, GPBFL
denotes our GPBF-LEARN approach that considers the noisy
labels during optimization.

The system state in this scenario is the 1D position of the car
along the track, that is, the approach must learn to project the
3D IMU observations Z along with the control information U
into a 1D latent space X. Training data consist of 5 manually
controlled cycles of the car around the track. We perform
cross-validation by applying the different approaches to four
loops and testing tracking performance on the remaining
loop. The overhead camera provides fairly accurate 1D track
position via background subtraction and simple blob tracking,
followed by snapping xy pixel locations to an aligned model
of the track. To simulate noisy labels, we added different levels
of Gaussian noise to the camera based 1D track locations and
used these as X. For each noise level applied to the labels
we perform a total of 10 training and test runs. For each
run, we extract GP-BayesFilters using the resulting optimized
latent states X* along with the controls and IMU observations.
Currently, learning is done with each loop treated as a separate
episode as we do not handle the jump between the beginning
and end of the loop for the 1D latent space. This could likely
be handled by a periodic kernel as future work. The quality

delta angle (rad)

10 i
time (sec)

(left) The slotcar track used during the experiments. An overhead camera is used to ground truth evaluation. (left middle) The test vehicle moves

of the resulting models is tested by checking how close X*
is to the ground truth states provided by the camera, and by
tracking with a GP-UKF on previously unseen test data.

The left panel in Fig. 2 shows a plot of the differences
between the learned hidden states, X*, and the grgund truth
for different values of noise applied to the labels X. As can
be seen, GPBFL is able to recover the correct 1D latent space
even for high levels of noise. GPDM which only considers
the labels by initializing the latent states generates a high
error. This is due to the fact that the optimization performed
GPDM lets these latent states “drift” from the desired values.
The optimization performed by GPDM without control is even
higher than that with control. GPDM without control ends up
overly smooth since it does not have controls to constrain
the latent states. Not surprisingly, the error of INIT increases
linearly in the noise of the labels, since INIT uses these labels
as the latent states without any optimization.

The middle panel in Fig. 2 shows the RMS error when
running a GP-BayesFilter that was extracted based on the
learned hidden states using the different approaches. For
clarity, we only show the averages over those runs that did
not produce a tracking error. A run is considered a failure
if the RMS error is greater than 70 cm. Out of its 80 runs,
INIT produced 18 tracking failures, GPDM without controls 11,
GPDM with controls 7, while our approach GPBFL produced
only one failure. Note that a tracking failure can occur due to
both mis-alignment between the learned latent space and high
noise in the observations.

As can be seen in the figure, GPBFL is able to learn a
GP-BayesFilter that maintains a low tracking RMS error even
when the labels X are very noisy. On the other hand, simply
ignoring noise in labels results in increasingly bad tracking
performance, as shown by the graph for INIT. In addition,
GPDM generates significantly poorer tracking performance
than our approach.

C. Incorporating sparse labels

In some settings it might not be possible to provide even
noisy labels for all training points. Here we evaluate this
scenario by randomly removing noisy labels from the training
data. For the approach INIT we generated full labels by
linearly interpolating between the sparse labels. The right
panel in Fig. 2 shows the errors between ground truth 1D
latent space and the learned latent space, X*, for different
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levels of label sparsity. Again, our approach, GPBFL, learns
a more consistent latent space as GPDM, which uses the
labels only for initialization. The linear interpolation approach,
INIT, outperforms GPDM since it does not learn anything and
thereby avoids drifting from the provided labels.

D. GPBF-LEARN for subspace identification without labels

The final experiment demonstrates that GPBF-LEARN can
learn a model without any labeled data. Here, the training
input consists solely of turning rate observations Z and control
inputs U. No weak labels X are provided and no information
about the structure of the latent space is given. To encode
less knowledge about the underlying race track, we make
GPBF-LEARN learn a 2D latent space. Overall, this is an
extremely challenging task for latent variable models. To see,
we initialized the latent state of GPBF-LEARN using PCA,
as is typically done for GPLVMs [21, 11, 19]. In this case,
GPBF-LEARN was not able to learn a smooth model of the
latent space. This is because PCA does not take the dynamics
in latent space into account.
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Fig. 3. 2D latent space learned by N4SID and GPBF-LEARN with N4SID

initialization.

A different approach for initialization is N4SID, which is a
well known, linear model for system identification of dynam-
ical systems [20]. N4SID provides an estimate of the hidden
state which does take into account the system dynamics. The
latent space recovered by N4SID is given by the blue graph
in Fig. 3. N4SID can only generate an extremely un-smooth
latent space that does not reflect the smooth structure of the
underlying track. When running GPBF-LEARN on the data,
initialized with N4SID, we get the red graph shown in the

same figure. Obviously, GPBF-LEARN takes advantage of its
underlying non-linear GP model to recover a smooth latent
space that nicely reflects the cyclic structure of the race track.
Note that we would not expect all cycles through the track to
be mapped exactly on top of each other, since the slotcar has
very different observations depending on its velocity.
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Fig. 4. Plots showing misalignment of the input data (top), and alignment
in the latent space learned by GPBF-LEARN (bottom).

An important aspect of the optimization problem is to learn
a proper alignment of the data, that is, each portion of the real
track should correspond to similar latent states. The top of
Fig. 4 shows the true x and y positions of the car in physical
space for the different cycles through the track. As can be
seen, the car moves through the track with different velocities,
resulting in the mis-aligned graphs. To visualize that GPBF-
LEARN was able to recover an aligned latent space from the
unaligned input data (note that we used IMU, zy is only used
for visualization), we plot the two latent dimensions vs. the
position on the 1D track model. This plot is shown in the
bottom of Fig. 4. As can be seen, the latent states are well
aligned with the 1D model over the different cycles through
the track. This result is extremely encouraging, since it shows
that we might be able to learn an imitation control model based
on such demonstrations, as done by Coates and colleagues [2].



VI. CONCLUSION

This paper introduced GPBF-LEARN, a framework for
learning GP-BayesFilters from only weakly labeled train-
ing data. We thereby overcome a key limitation of GP-
BayesFilters, which so far required the availability of accurate
ground truth states for learning Gaussian process prediction
and observation models [7].

GPBF-LEARN builds on recently introduced Gaussian Pro-
cess Latent Variable Models (GPLVMs) and their extensions
to dynamical systems [11, 21]. GPBF-LEARN improves on
existing GPLVM systems in various ways. First, it can incor-
porate weak labels on the latent states. It is thereby able to
learn a latent space that is consistent with a desired physical
space, as demonstrated in the context of our slotcar track.
Second, GPBF-LEARN can incorporate control information
into the dynamics model used for the latent space. Obviously,
this ability to use control information is extremely important
for complex dynamical systems. Third, we introduce N4SID, a
linear subspace ID technique, as a very powerful initialization
method for GPLVMs. In our slotcar testbed we found that
N4SID enabled GPBF-LEARN to learn a model even when
the initialization via PCA failed. Our experiments also show
that GPBF-LEARN learns far more consistent models than
N4SID alone.

Additional experiments on fully unlabeled data show that
GPBF-LEARN can perform nonlinear subspace identification
and data alignment. We demonstrate this ability in the context
of tracking a slotcar on a track solely based on control and
IMU turn rate information. Here, our approach is able to learn
a consistent 2D latent space solely based on the control and
observation sequence. This application is extremely challeng-
ing, since the observations are not very informative and show
a high rate of aliasing. Furthermore, due to the constraint
onto the track, the dynamics and observation model of the
car strongly depend on the layout of the track. Thus, GPBF-
LEARN has to jointly recover a model for the car and the
track.

We have also obtained some preliminary results of tracking
the slotcar in the 3D latent space. For this task, the automati-
cally learned GP hyperparameters turned out to be insufficient
for tracking, requiring additional manual tuning. To overcome
this problem, we intend to explore the use of discriminative
learning to optimize the hyperparameters for filtering.

In future work, GPBF-LEARN could be applied to imita-
tion learning, similar to the approach introduced by Coates
and colleagues for helicopter control [2]. In this context we
would take advantage of the automatic alignment of different
demonstrations given by GPBF-LEARN . An integration of
GP-BayesFilter with model predictive control techniques is
an interesting question in this context. Other possible ex-
tensions include the incorporation of parametric models to
improve learning and generalization. Finally, the latent model
underlying GPBF-LEARN is by no means restricted to GP-
BayesFilters. It can be applied to improve learning quality
whenever there is no accurate ground truth data available for

training Gaussian processes.
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