
Incremental Sampling-based Algorithms
for Optimal Motion Planning

Sertac Karaman Emilio Frazzoli

Abstract— During the last decade, incremental sampling-based
motion planning algorithms, such as the Rapidly-exploring Ran-
dom Trees (RRTs), have been shown to work well in practice
and to possess theoretical guarantees such as probabilistic com-
pleteness. However, no theoretical bounds on the quality of the
solution obtained by these algorithms, e.g., in terms of a given cost
function, have been established so far. The purpose of this paper
is to fill this gap, by designing efficient incremental sampling-
based algorithms with provable optimality properties. The first
contribution of this paper is a negative result: it is proven that,
under mild technical conditions, the cost of the best path returned
by RRT converges almost surely to a non-optimal value, as
the number of samples increases. Second, a new algorithm is
considered, called the Rapidly-exploring Random Graph (RRG),
and it is shown that the cost of the best path returned by RRG
converges to the optimum almost surely. Third, a tree version of
RRG is introduced, called RRT∗, which preserves the asymptotic
optimality of RRG while maintaining a tree structure like RRT.
The analysis of the new algorithms hinges on novel connections
between sampling-based motion planning algorithms and the
theory of random geometric graphs. In terms of computational
complexity, it is shown that the number of simple operations
required by both the RRG and RRT∗ algorithms is asymptotically
within a constant factor of that required by RRT.

I. INTRODUCTION

Even though modern robots may posses significant differ-
ences in sensing, actuation, size, application, or workspace,
the motion planning problem, i.e., the problem of planning
a dynamically feasible trajectory through a complex environ-
ment cluttered with obstacles, is embedded and essential in
almost all robotics applications. Moreover, this problem has
several applications in other disciplines such as verification,
computational biology, and computer animation [1]–[5].

Motion planning has been a highly active area of research
since the late 1970s. Early approaches to the problem has
mainly focused on the development of complete planners (see,
e.g., [6]), which find a solution if one exists and return failure
otherwise. However, it was established as early as 1979 that
even a most basic version of the motion planning problem,
called the piano mover’s problem, is known to be PSPACE-
hard [7], which strongly suggests that complete planners are
doomed to suffer from computational complexity.

Tractable algorithms approach the motion planning problem
by relaxing the completeness requirement to, for instance,
resolution completeness, which amounts to finding a solution,
if one exists, when the resolution parameter of the algorithm is
set fine enough. Most motion planning methods that are based
on gridding or cell decomposition fall into this category. A

The authors are with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA.

more recent line of research that has achieved a great success
has focused on the construction of paths connecting randomly-
sampled points. Algorithms such as Probabilistic RoadMaps
(PRM) [8] have been shown to be probabilistically complete,
i.e., such that the probability of finding a solution, if one exists,
approaches one as the number of samples approaches infinity.

The PRM algorithm constructs a graph of feasible paths off-
line, and is primarily aimed at multiple-query applications, in
which several motion-planning problems need to be solved in
the same environment. Incremental sampling-based algorithms
have been developed for single-query, real-time applications;
among the most influential of these, one can mention Rapidly-
exploring Random Trees (RRT) [9], and the algorithm in [10].
These algorithms have been shown to be probabilistically
complete, with an exponential decay of the probability of
failure. Moreover, RRTs were demonstrated in various robotic
platforms in major robotics events (see, e.g., [11]).

A class of incremental sampling-based motion planning al-
gorithms that is worth mentioning at this point is the Rapidly-
exploring Random Graphs (RRGs), which were proposed
in [12] to find feasible trajectories that satisfy specifications
other than the usual “avoid all the obstacles and reach the
goal region”. More generally, RRGs can handle specifica-
tions given in the form of deterministic µ-calculus, which
includes the widely-used Linear Temporal Logic (LTL). RRGs
incrementally build a graph of trajectories, since specifications
given in µ-calculus, in general, require infinite-horizon looping
trajectories, which are not included in trees.

To address the challenges posed by real-time applications,
state-of-the-art motion planning algorithms, such as RRTs, are
tailored to return a feasible solution quickly, paying almost
no attention to the “quality” of the solution. On the other
hand, in typical implementations [11], the algorithm is not
terminated as soon as the first feasible solution is found; rather,
all the available computation time is used to search for an
improved solution, with respect to a performance metric such
as time, path length, fuel consumption, etc. A shortcoming of
this approach is that there is no guarantee that the computation
will eventually converge to optimal trajectories. In fact, despite
the clear practical need, there has been little progress in
characterizing optimality properties of sampling-based motion
planning algorithms, even though the importance of these
problems was emphasized in early seminal papers such as [9].

Yet, the importance of the quality of the solution returned by
the planners has been noticed, in particular, from the point of
view of incremental sampling-based motion planning. In [13],
Urmson and Simmons have proposed heuristics to bias the
tree growth in the RRT towards those regions that result in
low-cost solutions. They have also shown experimental results



evaluating the performance of different heuristics in terms of
the quality of the solution returned. In [14], Ferguson and
Stentz have considered running the RRT algorithm multiple
times in order to progressively improve the quality of the
solution. They showed that each run of the algorithm results
in a path with smaller cost, even though the procedure is not
guaranteed to converge to an optimal solution.

To the best of the authors’ knowledge, this paper provides
the first thorough analysis of optimality properties of incre-
mental sampling-based motion planning algorithms. In partic-
ular, it is shown that the probability that the RRT converges
to an optimal solution, as the number of samples approaches
infinity, is zero under some reasonable technical assumptions.
In fact, the RRT algorithm almost always converges to a non-
optimal solution. Second, it is shown that the probability of
the same event for the RRG algorithm is one. That is, the
RRG algorithm is asymptotically optimal, in the sense that it
converges to an optimal solution almost surely as the number
of samples approaches infinity. Third, a novel variant of the
RRG algorithm is introduced, called RRT∗, which inherits the
asymptotic optimality of the RRG algorithm while maintaining
a tree structure. To do so, the RRT∗ algorithm essentially
“rewires” the tree as it discovers new lower-cost paths reaching
the nodes that are already in the tree. Finally, it is shown
that the asymptotic computational complexity of the RRG and
RRT∗ algorithms is essentially the same as that of RRTs.

To the authors’ knowledge, the algorithms considered in
this paper are the first computationally efficient incremental
sampling-based motion planning algorithms with asymptotic
optimality guarantees. Indeed, the results in this paper imply
that these algorithms are optimal also from an asymptotic
computational complexity point of view, since they closely
match lower bounds for computing nearest neighbors. The
key insight is that connections between vertices in the graph
should be sought within balls whose radius vanishes with a
certain rate as the size of the graph increases, and is based on
new connections between motion planning and the theory of
random geometric graphs [15], [16].

The paper is organized as follows. Section II lays the ground
in terms of notation and problem formulation. Section III is
devoted to the introduction of the RRT and RRG algorithms.
In Section IV, these algorithms are analyzed in terms of
probabilistic completeness, asymptotic optimality, and com-
putational complexity. The RRT∗ algorithm is presented in
Section V, where it is shown that RRT∗ inherits the theoretical
guarantees of the RRG algorithm. Experimental results are
presented and discussed in Section VI. Concluding remarks
and directions for future work are given in Section VII.

Due to space limitations, results are stated without formal
proofs. An extended version of this paper, including proofs
of the major results, technical discussions, and extensive
experimental results, is available [17]. An implementation
of the RRT∗ algorithm in the C language is available at
http://ares.lids.mit.edu/software.

The focus of this paper is on the basic problem of navigating
through a connected bounded subset of a d-dimensional Eu-
clidean space. However, the proposed algorithms also extend
to systems with differential constraints, as shown in [18].

II. PRELIMINARY MATERIAL

A. Notation
A sequence on a set A, denoted as {ai}i∈N, is a mapping

from N to A with i 7→ ai. Given a, b ∈ R, the closed interval
between a and b is denoted by [a, b]. The Euclidean norm is
denoted by ‖ · ‖. Given a set X ⊂ Rd, the closure of X is
denoted by cl(X), the Lebesgue measure of X , i.e., its volume,
is denoted by µ(X). The closed ball of radius r > 0 centered
at x ∈ Rd is defined as Bx,r := {y ∈ Rd | ‖y − x‖ ≤ r}. The
volume of the unit ball in Rd is denoted by ζd.

Given a set X ⊂ Rd, and a scalar s ≥ 0, a path in X is a
continuous function σ : [0, s] → X , where s is the length of
the path defined in the usual way. Given two paths in X , σ1 :
[0, s1]→ X , and σ2 : [0, s2]→ X , with σ1(s1) = σ2(0), their
concatenation is denoted by σ1|σ2, i.e., σ = σ1|σ2 : [0, s1 +
s2] → X with σ(s) = σ1(s) for all s ∈ [0, s1], and σ(s) =
σ2(s− s1) for all s ∈ [s1, s1 + s2]. The set of all paths in X
with nonzero length is denoted by ΣX . The straight continuous
path between x1, x2 ∈ Rd is denoted by Line(x1, x2).

Let (Ω,F ,P) be a probability space. A random variable is a
measurable function from Ω to R; an extended random variable
can also take the values ±∞. A sequence {Yi}i∈N of random
variables is said to converge surely to a random variable Y if
limi→∞ Yi(ω) = Y(ω) for all ω ∈ Ω; the sequence is said to
converge almost-surely if P({limi→∞ Yi = Y}) = 1.

B. Problem Formulation
In this section, two variants of the path planning problem

are presented. First, the feasibility problem in path planning
is formalized, then the optimality problem is introduced.

Let X be a bounded connected open subset of Rd, where
d ∈ N, d ≥ 2. Let Xobs and Xgoal, called the obstacle region
and the goal region, respectively, be open subsets of X . Let
us denote the obstacle-free space, i.e., X \Xobs, as Xfree. Let
the initial state, xinit, be an element of Xfree. In the sequel, a
path in Xfree is said to be a collision-free path. A collision-free
path that starts at xinit and ends in the goal region is said to
be a feasible path, i.e., a collision-free path σ : [0, s]→ Xfree

is feasible if and only if σ(0) = xinit and σ(s) ∈ Xgoal.
The feasibility problem of path planning is to find a feasible

path, if one exists, and report failure otherwise.

Problem 1 (Feasible planning) Given a bounded connected
open set X ⊂ Rd, an obstacle space Xobs ⊂ X , an initial
state xinit ∈ Xfree, and a goal region Xgoal ⊂ Xfree, find a
path σ : [0, s] → Xfree such that σ(0) = xinit and σ(s) ∈
Xgoal, if one exists. If no such path exists, then report failure.

Let c : ΣXfree
→ R>0 be a function, called the cost function,

which assigns a non-negative cost to all nontrivial collision-
free paths. The optimality problem of path planning asks for
finding a feasible path with minimal cost.

Problem 2 (Optimal planning) Given a bounded connected
open set X , an obstacle space Xobs, an initial state xinit, and
a goal region Xgoal, find a path σ∗ : [0, s] → cl(Xfree) such
that (i) σ∗(0) = xinit and σ∗(s) ∈ Xgoal, and (ii) c(σ∗) =
minσ∈Σcl(Xfree)

c(σ). If no such path exists, then report failure.



III. ALGORITHMS

In this section, two incremental sampling-based motion
planning algorithms, namely the RRT and the RRG algorithms,
are introduced. Before formalizing the algorithms, let us note
the primitive procedures that they rely on.

Sampling: The function Sample : N → Xfree returns
independent identically distributed (i.i.d.) samples from Xfree.

Steering: Given two points x, y ∈ X , the function Steer :
(x, y) 7→ z returns a point z ∈ Rd such that z is “closer” to y
than x is. Throughout the paper, the point z returned by the
function Steer will be such that z minimizes ‖z − y‖ while
at the same time maintaining ‖z − x‖ ≤ η, for a prespecified
η > 0, i.e., Steer(x, y) = argminz∈Rd,‖z−x‖≤η‖z − y‖.

Nearest Neighbor: Given a graph G = (V,E) and a point
x ∈ Xfree , the function Nearest : (G, x) 7→ v returns
a vertex v ∈ V that is “closest” to x in terms of a given
distance function. In this paper, we will use Euclidean distance
(see, e.g., [9] for alternative choices), i.e., Nearest(G =
(V,E), x) = argminv∈V ‖x− v‖.

Near Vertices: Given a graph G = (V,E), a point x ∈ Xfree,
and a number n ∈ N, the function Near : (G, x, n) 7→
V ′ returns a set V ′ of vertices such that V ′ ⊆ V . The
Near procedure can be thought of as a generalization of
the nearest neighbor procedure in the sense that the former
returns a collection of vertices that are close to x, whereas
the latter returns only one such vertex that is the closest.
Just like the Nearest procedure, there are many ways to
define the Near procedure, each of which leads to different
algorithmic properties. For technical reasons to become clear
later, we define Near(G, x, n) to be the set of all vertices
within the closed ball of radius rn centered at x, where

rn = min

{(
γ
ζd

logn
n

)1/d

, η

}
, and γ is a constant. Hence,

the volume of this ball is min{γ logn
n , ζd η

d}.
Collision Test: Given two points x, x′ ∈ Xfree, the Boolean

function ObstacleFree(x, x′) returns True iff the line seg-
ment between x and x′ lies in Xfree, i.e., [x, x′] ⊂ Xfree.

Both the RRT and the RRG algorithms are similar to most
other incremental sampling-based planning algorithms (see
Algorithm 1). Initially, the algorithms start with the graph that
includes the initial state as its single vertex and no edges; then,
they incrementally grow a graph on Xfree by sampling a state
xrand from Xfree at random and extending the graph towards
xrand. In the sequel, every such step of sampling followed
by extensions (Lines 2-5 of Algorithm 1) is called a single
iteration of the incremental sampling-based algorithm.

Hence, the body of both algorithms, given in Algorithm 1, is
the same. However, RRGs and RRTs differ in the choice of the
vertices to be extended. The Extend procedures for the RRT
and the RRG algorithms are provided in Algorithms 2 and 3,
respectively. Informally speaking, the RRT algorithm extends
the nearest vertex towards the sample. The RRG algorithm first
extends the nearest vertex, and if such extension is successful,
it also extends all the vertices returned by the Near procedure,
producing a graph in general. In both cases, all the extensions
resulting in collision-free trajectories are added to the graph
as edges, and their terminal points as new vertices.

Algorithm 1: Body of RRT and RRG Algorithms
1 V ← {xinit}; E ← ∅; i← 0;
2 while i < N do
3 G← (V,E);
4 xrand ← Sample(i); i← i+ 1;
5 (V,E)← Extend(G, xrand);

Algorithm 2: ExtendRRT (G, x)

1 V ′ ← V ; E′ ← E;
2 xnearest ← Nearest(G, x);
3 xnew ← Steer(xnearest, x);
4 if ObstacleFree(xnearest, xnew) then
5 V ′ ← V ′ ∪ {xnew};
6 E′ ← E′ ∪ {(xnearest, xnew)};
7 return G′ = (V ′, E′)

IV. ANALYSIS

A. Convergence to a Feasible Solution

In this section, the feasibility problem is considered. It is
proven that the RRG algorithm inherits the probabilistic com-
pleteness as well as the exponential decay of the probability
of failure (as the number of samples increase) from the RRT.
These results imply that the RRT and RRG algorithms have
the same performance in producing a solution to the feasibility
problem as the number of samples increase.

Sets of vertices and edges of the graphs maintained by the
RRT and the RRG algorithms can be defined as functions from
the sample space Ω to appropriate sets. More precisely, let
{VRRT

i }i∈N and {VRRG
i }i∈N, sequences of functions defined

from Ω into finite subsets of Xfree, be the sets of vertices in the
RRT and the RRG, respectively, at the end of iteration i. By
convention, we define VRRT

0 = VRRG
0 = {xinit}. Similarly,

let ERRT
i and ERRG

i , defined for all i ∈ N, denote the set of
edges in the RRT and the RRG, respectively, at the end of
iteration i. Clearly, ERRT

0 = ERRG
0 = ∅.

An important lemma used for proving the equivalency
between the RRT and the RRG algorithms is the following.

Lemma 3 For all i ∈ N and all ω ∈ Ω, VRRT
i (ω) =

VRRG
i (ω) and ERRT

i (ω) ⊆ ERRG
i (ω).

Lemma 3 implies that the paths discovered by the RRT

Algorithm 3: ExtendRRG(G, x)

1 V ′ ← V ; E′ ← E;
2 xnearest ← Nearest(G, x);
3 xnew ← Steer(xnearest, x);
4 if ObstacleFree(xnearest, xnew) then
5 V ′ ← V ′ ∪ {xnew};
6 E′ ← E′ ∪ {(xnearest, xnew), (xnew, xnearest)};
7 Xnear ← Near(G, xnew, |V |);
8 for all xnear ∈ Xnear do
9 if ObstacleFree(xnew, xnear) then

10 E′ ← E′ ∪ {(xnear, xnew), (xnew, xnear)};

11 return G′ = (V ′, E′)



algorithm by the end of iteration i is, essentially, a subset of
those discovered by the RRG by the end of the same iteration.

An algorithm addressing Problem 1 is said to be proba-
bilistically complete if it finds a feasible path with probability
approaching one as the number of iterations approaches infin-
ity. Note that there exists a collision-free path starting from
xinit to any vertex in the tree maintained by the RRT, since
the RRT maintains a connected graph on Xfree that necessarily
includes xinit. Using this fact, the probabilistic completeness
property of the RRT is stated alternatively as follows.

Theorem 4 (see [9]) If there exists a feasible solution to
Problem 1, then limi→∞ P

({
VRRT
i ∩Xgoal 6= ∅

})
= 1.

An attraction sequence [9] is defined as a finite sequence
A = {A1, A2, . . . , Ak} of sets as follows: (i) A0 = {xinit},
and (ii) for each set Ai, there exists a set Bi, called the basin
such that for any x ∈ Ai−1, y ∈ Ai, and z ∈ X \ Bi, there
holds ‖x − y‖ ≤ ‖x − z‖ Given an attraction sequence A of
length k, let pk denote mini∈{1,2,...,k}

(
µ(Ai)
µ(Xfree)

)
.

The following theorem states that the probability that the
RRT algorithm fails to return a solution, when one exists,
decays to zero exponentially fast.

Theorem 5 (see [9]) If there exists an attraction sequence A
of length k, then P

({
VRRT
i ∩Xgoal = ∅

})
≤ e− 1

2 (i pk−2k).

With Lemma 3 and Theorems 4 and 5, the following
theorem is immediate.
Theorem 6 If there exists a feasible solution to Prob-
lem 1, then limi→∞ P

({
VRRG
i ∩Xgoal 6= ∅

})
= 1. More-

over, if an attraction sequence A of length k exists, then
P
({
VRRG
i ∩Xgoal = ∅

})
≤ e− 1

2 (i pk−2 k).

B. Asymptotic Optimality
This section is devoted to the investigation of optimality

properties of the RRT and the RRG algorithms. First, un-
der some mild technical assumptions, it is shown that the
probability that the RRT converges to an optimal solution
is zero. However, the convergence of this random variable is
guaranteed, which implies that the RRT converges to a non-
optimal solution with probability one. On the contrary, it is
subsequently shown that the RRG algorithm converges to an
optimal solution almost-surely.

Let {YRRT
i }i∈N be a sequence of extended random variables

that denote the cost of a minimum-cost path contained within
the tree maintained by the RRT algorithm at the end of
iteration i. The extended random variable YRRG

i is defined
similarly. Let c∗ denote the cost of a minimum-cost path in
cl(Xfree), i.e., the cost of a path that solves Problem 2.

Let us note that the limits of these two extended random
variable sequences as i approaches infinity exist. More for-
mally, notice that YRRT

i+1 (ω) ≤ YRRT
i (ω) holds for all i ∈ N

and all ω ∈ Ω. Moreover, YRRT
i (ω) ≥ c∗ for all i ∈ N

and all ω ∈ Ω, by optimality of c∗. Hence, {YRRT
i }i∈N is

a surely non-increasing sequence of random variables that is
surely lower-bounded by c∗. Thus, for all ω ∈ Ω, the limit
limi→∞ YRRT

i (ω) exists. The same argument also holds for
the sequence {YRRG

i }i∈N.

1) Almost Sure Nonoptimality of the RRT: Let Σ∗ denote
the set of all optimal paths, i.e., the set of all paths that solve
Problem 2, and Xopt denote the set of states that an optimal
path in Σ∗ passes through, i.e., Xopt = ∪σ∗∈Σ∗ ∪τ∈[0,s∗]

{σ∗(τ)}. Consider the following assumptions.

Assumption 7 (Zero-measure Optimal Paths) The set of
all points in the state-space that an optimal trajectory passes
through has measure zero, i.e., µ (Xopt) = 0.

Assumption 8 (Sampling Procedure) The sampling proce-
dure is such that the samples {Sample(i)}i∈N are drawn
from an absolutely continuous distribution with a continuous
density function f(x) bounded away from zero on Xfree.

Assumption 9 (Monotonicity of the Cost Function) For
all σ1, σ2 ∈ ΣXfree

, the cost function c satisfies the following:
c(σ1) ≤ c(σ1|σ2).

Assumption 7 rules out trivial cases, in which the RRT
algorithm can sample exactly an optimal path with non-
zero probability. Assumption 8 also ensures that the sampling
procedure can not be tuned to construct the optimal path
exactly. Finally, Assumption 9 merely states that extending
a path to produce a longer path can not decrease its cost.

Recall that d denotes the dimensionality of the state space.
The negative result of this section is formalized as follows.

Theorem 10 Let Assumptions 7, 8, and 9 hold. Then, the
probability that the cost of the minimum-cost path in the RRT
converges to the optimal cost is zero, i.e.,

P
({

lim
i→∞

YRRT
i = c∗

})
= 0,

whenever d ≥ 2.

The key idea in proving this result is that the probability of
extending a node on an optimal path (e.g., the root node) goes
to zero very quickly, in such a way that any such node will
only have a finite number of children, almost surely. Because
of Assumptions 7 and 8, this implies the result.

As noted before, the limit limi→∞ YRRT
i (ω) exists and is

a random variable. However, Theorem 10 directly implies
that this limit is strictly greater than c∗ with probability one,
i.e., P

(
{limi→∞ YRRT

i > c∗}
)

= 1. In other words, it is
established, as a corollary, that the RRT algorithm converges
to a nonoptimal solution with probability one.

It is interesting to note that, since the cost of the best path
returned by the RRT algorithm converges to a random variable,
say YRRT

∞ , Theorem 10 provides new insight explaining the
effectiveness of approaches as in [14]. In fact, running multiple
instances of the RRT algorithm amounts to drawing multiple
samples of YRRT∞ .

2) Almost Sure Optimality of the RRG: Consider the fol-
lowing set of assumptions, which will be required to show the
asymptotic optimality of the RRG.

Assumption 11 (Additivity of the Cost Function) For all
σ1, σ2 ∈ ΣXfree

, the cost function c satisfies the following:
c(σ1|σ2) = c(σ1) + c(σ2).



Assumption 12 (Continuity of the Cost Function) The
cost function c is Lipschitz continuous in the following
sense: there exists some constant κ such that for any two
paths σ1 : [0, s1] → Xfree and σ2 : [0, s2] → Xfree,
|c(σ1)− c(σ2)| ≤ κ supτ∈[0,1] ‖σ1(τ s1)− σ2(τ s2)‖.

Assumption 13 (Obstacle Spacing) There exists a constant
δ ∈ R+ such that for any point x ∈ Xfree, there exists x′ ∈
Xfree, such that (i) the δ-ball centered at x′ lies inside Xfree,
i.e., Bx′,δ ⊂ Xfree, and (ii) x lies inside the δ-ball centered at
x′, i.e., x ∈ Bx′,δ .

Assumption 12 ensures that two paths that are very close
to each other have similar costs. Let us note that several cost
functions of practical interest satisfy Assumptions 11 and 12.
Assumption 13 is a rather technical assumption, which ensures
existence of some free space around the optimal trajectories
to allow convergence. For simplicity, it is assumed that the
sampling is uniform, although the results can be directly
extended to more general sampling procedures.

Recall that d is the dimensionality of the state-space X ,
and γ is the constant defined in the Near procedure. The
positive result that states the asymptotic optimality of the RRG
algorithm can be formalized as follows.

Theorem 14 Let Assumptions 11, 12, and 13 hold, and as-
sume that Problem 1 admits a feasible solution. Then, the cost
of the minimum-cost path in the RRG converges to the optimal
cost almost-surely, i.e.,

P
({

lim
i→∞

YRRG
i = c∗

})
= 1,

whenever d ≥ 2 and γ > γL := 2d(1 + 1/d)µ(Xfree).

This result relies on the fact that a random geometric graph
with n vertices formed by connecting each vertex with vertices
within a distance of dn = γ′ (log n /n)

1/d will result in a
connected graph almost surely as n → ∞, whenever γ′ is
larger than a certain lower bound γ1 [19]. In fact, the bound
on γ′ is a tight threshold in the sense that there exists an
upper bound γ2 < γ1 such that, if γ′ < γ2, then the resulting
graph will be disconnected almost surely [19]. This result
strongly suggests that shrinking the ball in the Near procedure
faster than the rate proposed will not yield an asymptotically
optimal algorithm. The authors have experienced this fact in
simulation studies: setting γ to around one third of γL does
not seem to provide the asymptotic optimality property. On
the other hand, as it will be shown in the next section, if
the size of the same ball is reduced slower than the proposed
rate, then the asymptotic complexity of the resulting algorithm
will not be the same as the RRT. Hence, scaling rn with
(log n /n)

1/d in the Near procedure, surprisingly, achieves
the perfect balance between asymptotic optimality and low
computational complexity, since relevant results in the theory
of random geometric graphs and lower bounds on nearest
neighbor computation strongly suggest that a different rate will
lose either the former or the latter while failing to provide an
extra benefit in any of the two.

C. Computational Complexity

The objective of this section is to compare the computational
complexity of RRTs and RRGs. It is shown that these algo-
rithms share essentially the same asymptotic computational
complexity in terms of the number of calls to simple opera-
tions such as comparisons, additions, and multiplications.

Consider first the computational complexity of the RRT and
the RRG algorithms in terms of the number of calls to the
primitive procedures introduced in Section III. Notice that, in
every iteration, the number of calls to Sample, Steer, and
Nearest procedures are the same in both algorithms. How-
ever, number of calls to Near and ObstacleFree procedures
differ: the former is never called by the RRT and is called at
most once by the RRG, whereas the latter is called exactly
once by the RRT and at least once by the RRG.

Let ORRG
i be a random variable that denotes the number of

calls to the ObstacleFree procedure by the RRG algorithm in
iteration i. Notice that, as an immediate corollary of Lemma 3,
the number of vertices in the RRT and RRG algorithms is the
same at any given iteration. Let Ni be the number of vertices
in these algorithms at the end of iteration i. The following
theorem establishes that the expected number of calls to the
ObstacleFree procedure in iteration i by the RRG algorithm
scales logarithmically with the number of vertices in the graph
as i approaches infinity.

Lemma 15 In the limit as i approaches infinity, the random
variable ORRG

i / log(Ni) is no more than a constant in expec-
tation, i.e., lim supi→∞ E

[
ORRG

i

log(Ni)

]
≤ φ, where φ ∈ R>0 is a

constant that depends only on the problem instance.

However, some primitive procedures clearly take more
computation time to execute than others. For a meaningful
comparison, one should also evaluate the time required to
execute each primitive procedure in terms of the number of
simple operations (also called steps) that they perform. This
analysis shows that the expected number of simple operations
performed by the RRG is asymptotically within a constant
factor of that performed by the RRT, which establishes that
the RRT and the RRG algorithms have the same asymptotic
computational complexity in terms of the number of steps that
they perform.

First, notice that Sample, Steer, and ObstacleFree pro-
cedures can be performed in a constant number of steps, i.e.,
independent of the number of vertices in the graph.

Second, consider the computational complexity of the
Nearest procedure. The problem of finding a nearest neighbor
is widely studied, e.g., in the computer graphics literature.
Even though algorithms that achieve sub-linear time complex-
ity are known [20], lower bounds suggest that nearest neighbor
computation requires at least logarithmic time [21]. In fact,
assuming that the Nearest procedure computes an approxi-
mate nearest neighbor (see, e.g., [21] for a formal definition)
using the algorithm given in [21], which is optimal in fixed
dimensions from a computational complexity point of view
closely matching a lower bound for tree-based algorithms, the
Nearest algorithm has to run in Ω(log n) time as formalized
in the following lemma.



LetMRRT
i be the random variable that denotes the number

of steps executed by the RRT algorithm in iteration i.

Lemma 16 Assuming that Nearest is implemented using the
algorithm given in [21], which is computationally optimal
in fixed dimensions, the number of steps executed by the
RRT algorithm at each iteration is at least order log(Ni) in
expectation in the limit, i.e., there exists a constant φRRT ∈
R>0 such that lim infi→∞ E

[
MRRT

i

log(Ni)

]
≥ φRRT .

Likewise, problems similar to that solved by the Near

procedure are also widely studied in the literature, generally
under the name of range search problems, as they have many
applications in, for instance, computer graphics [20].

Similar to the nearest neighbor search, computing approxi-
mate solutions to the range search problem is computationally
easier. A range search algorithm is said to be ε-approximate
if it returns all vertices that reside in the ball of size rn and
no vertices outside a ball of radius (1 + ε) rn, but may or
may not return the vertices that lie outside the former ball
and inside the latter ball. In fixed dimensions, computing ε-
approximate solutions can, in fact, be done in logarithmic time
using polynomial space, in the worst case [22].

Note that the Near procedure can be implemented as an
approximate range search while maintaining the asymptotic
optimality guarantee. Notice that the expected number of
vertices returned by the Near procedure also does not change,
except by a constant factor. Hence, the Near procedure can be
implemented to run in order log n expected time in the limit
and linear space in fixed dimensions.

Let MRRG
i denote the number of steps performed by the

RRG algorithm in iteration i. Then, together with Lemma 15,
the discussion above implies the following lemma.

Lemma 17 Assuming that the Near procedure is implemented
using the algorithm given in [22], the number of steps executed
by the RRG algorithm at each iteration is at most order
log(Ni) in expectation in the limit, i.e., there exists a constant
φRRG ∈ R>0 such that lim supi→∞ E

[
MRRG

i

log(Ni)

]
≤ φRRG.

Finally, by Lemmas 16 and 17, we conclude that the
RRT and the RRG algorithms have the same asymptotic
computational complexity as stated in the following theorem.

Theorem 18 Under the assumptions of Lemmas 16 and 17,
there exists a constant φ ∈ R>0 such that

lim sup
i→∞

E
[
MRRG

i

MRRT
i

]
≤ φ.

V. A TREE VERSION OF THE RRG ALGORITHM

Maintaining a tree structure rather than a graph may be ad-
vantageous in some applications, due to, for instance, relatively
easy extensions to motion planning problems with differential
constraints, or to cope with modeling errors. The RRG algo-
rithm can also be slightly modified to maintain a tree structure,
while preserving the asymptotic optimality properties as well
the computational efficiency. In this section a tree version of
the RRG algorithm, called RRT∗, is introduced and analyzed.

A. The RRT∗ Algorithm

Given two points x, x′ ∈ Xfree, recall that Line(x, x′) :
[0, s]→ Xfree denotes the path defined by σ(τ) = τx+ (s−
τ)x′ for all τ ∈ [0, s], where s = ‖x′ − x‖. Given a tree
G = (V,E) and a vertex v ∈ V , let Parent be a function
that maps v to the unique vertex v′ ∈ V such that (v′, v) ∈ E.

The RRT∗ algorithm differs from the RRT and the RRG
algorithms only in the way that it handles the Extend pro-
cedure. The body of the RRT∗ algorithm is presented in
Algorithm 1 and the Extend procedure for the RRT∗ is given
in Algorithm 4. In the description of the RRT∗ algorithm, the
cost of the unique path from xinit to a vertex v ∈ V is denoted
by Cost(v). Initially, Cost(xinit) is set to zero.

Algorithm 4: ExtendRRT∗(G, x)

1 V ′ ← V ; E′ ← E;
2 xnearest ← Nearest(G, x);
3 xnew ← Steer(xnearest, x);
4 if ObstacleFree(xnearest, xnew) then
5 V ′ ← V ′ ∪ {xnew};
6 xmin ← xnearest;
7 Xnear ← Near(G, xnew, |V |);
8 for all xnear ∈ Xnear do
9 if ObstacleFree(xnear, xnew) then

10 c′ ← Cost(xnear) + c(Line(xnear, xnew));
11 if c′ < Cost(xnew) then
12 xmin ← xnear;

13 E′ ← E′ ∪ {(xmin, xnew)};
14 for all xnear ∈ Xnear \ {xmin} do
15 if ObstacleFree(xnew, xnear) and

Cost(xnear) > Cost(xnew) + c(Line(xnew, xnear))
then

16 xparent ← Parent(xnear);
17 E′ ← E′ \ {(xparent, xnear)};

E′ ← E′ ∪ {(xnew, xnear)};

18 return G′ = (V ′, E′)

Similar to the RRT and RRG, the RRT∗ algorithm first
extends the nearest neighbor towards the sample (Lines 2-3).
However, it connects the new vertex, xnew, to the vertex that
incurs the minimum accumulated cost up until xnew and lies
within the set Xnear of vertices returned by the Near procedure
(Lines 6-13). RRT∗ also extends the new vertex to the vertices
in Xnear in order to “rewire” the vertices that can be accessed
through xnew with smaller cost (Lines 14-17).

B. Convergence to a Feasible Solution

For all i ∈ N, let VRRT∗

i and ERRT∗

i denote the set of
vertices and the set of edges of the graph maintained by the
RRT∗ algorithm, at the end of iteration i. The following lemma
is the equivalent of Lemma 3.

Lemma 19 For all i ∈ N and all ω ∈ Ω, VRRT∗

i (ω) =
VRRG
i (ω), and ERRT∗

i (ω) ⊆ ERRG
i (ω).

From Lemma 19 and Theorem 6, the following theorem, which
asserts the probabilistic completeness and the exponential de-
cay of failure probability of the RRT∗ algorithm, is immediate.



Theorem 20 If there exists a feasible solution to Prob-
lem 1, then limi→∞ P

({
VRRT∗

i ∩Xgoal 6= ∅
})

= 1. More-
over, if an attraction sequence A of length k exists, then
P
({
VRRT∗

i ∩Xgoal = ∅
})
≤ e− 1

2 (i pk−2 k).

C. Asymptotic Optimality

Let YRRT∗

i be a random variable that denotes the cost of
a minimum cost path in the tree maintained by the RRT∗

algorithm, at the end of iteration i. The following theorem
ensures the asymptotic optimality of the RRT∗ algorithm.

Theorem 21 Let Assumptions 11, 12, and 13 hold. Then, the
cost of the minimum cost path in the RRT∗ converges to c∗

almost surely, i.e., P
(
{limi→∞ YRRT∗

i = c∗}
)

= 1.

D. Computational Complexity

LetMRRT∗

i be the number of steps performed by the RRT∗

algorithm in iteration i. The following theorem follows from
Lemma 19 and Theorem 18.

Theorem 22 Under the assumptions of Theorem 18, there
exists a constant φ such that lim supi→∞ E

[
MRRT∗

i

MRRT
i

]
≤ φ.

VI. SIMULATIONS

This section presents simulation examples. A thorough
simulation study of the algorithms can be found in [17].

The RRT and the RRT∗ algorithms are run in a square
environment with obstacles and the cost function is set to the
Euclidean path length. The trees maintained by the algorithms
at different stages are shown in Figure 1. The figure illustrates
that the RRT algorithm does not considerably improve the
solution, whereas the RRT∗ algorithm converges towards an
optimal solution by finding a feasible solution of the homotopy
class that the optimal path lies in. An important difference
between the RRT and the RRT∗ algorithms is the ability of
the latter to efficiently consider different homotopy classes.
Thus, in an environment cluttered with obstacles, the cost
of first feasible solution found by the RRT or the RRT∗

algorithms can be drastically higher than the optimal cost.
Although the RRT∗ algorithm efficiently improves the solution
over time, the RRT algorithm tends to get stuck with the first
solution found. In fact, Monte-Carlo runs of both algorithms,
as shown in Figure 2.(a)-(b), illustrate that generally the
RRT does not improve the first solution found, whereas the
RRT∗ algorithm improves the solution significantly within
the first few thousand iterations, for this particular scenario.
Moreover, the cost of the best path in RRT seems to have
high variance, while after a few thousand iterations the costs
of the best path in the RRT∗ is almost the same in all runs, as
expected from the theoretical results presented in the previous
sections. Finally, the relative complexity of the two algorithms
is demonstrated in Monte-Carlo runs in Figure 2.(c). Notice
that the ratio of the running time of the algorithms up until
a certain iteration converges to a constant as the number of
iterations increases. Note that the convergence to this constant
is achieved when the free space is “fully explored”, i.e., almost

uniformly filled with the nodes of the trees. However, before
then the complexity of the RRT∗ is much lower than the
complexity in the limit value. In fact, the average amount
of time that the RRT∗ algorithm takes for finding a feasible
solution was found to be no more than five times that of the
RRT, in this particular scenario. Moreover, the first solution
found by the RRT∗ generally costs considerably less than that
found by the RRT.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented the results of a thorough analysis of
the RRT and RRG algorithms for optimal motion planning. It
is shown that, as the number of samples increases, the RRT
algorithm converges to a sub-optimal solution almost surely.
On the other hand, it is proven that the RRG algorithm has the
asymptotic optimality property, i.e., almost sure convergence
to an optimal solution, which the RRT algorithm lacked. The
paper also proposed a novel algorithm called the RRT∗, which
inherits the asymptotic optimality property of the RRG, while
maintaining a tree structure rather than a graph. The RRG and
the RRT∗ were shown to have no significant overhead when
compared to the RRT algorithm in terms of asymptotic com-
putational complexity. Experimental evidence demonstrating
the effectiveness of the proposed algorithms and supporting
the theoretical claims was also provided.

The results reported in this paper can be extended in a
number of directions, and applied to other sampling-based
algorithms other than RRT. First of all, the proposed approach,
building on the theory of random graphs to adjust the length
of new connections can enhance the computational efficiency
of PRM-based algorithms. Second, the algorithms and the
analysis should be modified to address motion planning prob-
lems in the presence of differential constraints, also known
as kino-dynamic planning problems. A third direction is the
optimal planning problem in the presence of temporal/logic
constraints on the trajectories, e.g., expressed using formal
specification languages such as Linear Temporal Logic, or
the µ-calculus. Such constraints correspond to, e.g., rules of
the road constraints for autonomous ground vehicles, mission
specifications for autonomous robots, and rules of engagement
in military applications. Ultimately, incremental sampling-
based algorithms with asymptotic optimality properties may
provide the basic elements for the on-line solution of differ-
ential games, as those arising when planning in the presence
of dynamic obstacles.

Finally, it is noted that the proposed algorithms may have
applications outside of the robotic motion planning domain.
In fact, the class of incremental sampling algorithm described
in this paper can be readily extended to deal with problems
described by partial differential equations, such as the eikonal
equation and the Hamilton-Jacobi-Bellman equation.

ACKNOWLEDGMENTS

The authors are grateful to Professors M.S. Branicky and
G.J. Gordon for their insightful comments on a draft version
of this paper. This research was supported in part by the
Michigan/AFRL Collaborative Center on Control Sciences,
AFOSR grant no. FA 8650-07-2-3744.



−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(b)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(c)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(d)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(e)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(f)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(g)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(h)

Fig. 1. A Comparison of the RRT∗ and RRT algorithms on a simulation example. The tree maintained by the RRT algorithm is shown in (a)-(d) in different
stages, whereas that maintained by the RRT∗ algorithm is shown in (e)-(h). The tree snapshots (a), (e) are at 1000 iterations , (b), (f) at 2500 iterations, (c),
(g) at 5000 iterations, and (d), (h) at 15,000 iterations. The goal regions are shown in magenta. The best paths that reach the target are highlighted with red.

 2000  4000  6000  8000 10000 12000 14000 16000 18000 20000
14

16

18

20

22

24

Number of iterations

C
os

t

(a)

 2000  4000  6000  8000 10000 12000 14000 16000 18000 20000
0

5

10

15

Number of iterations

C
os

t V
ar

ia
nc

e

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

Number of iterations (in millions)

C
om

pu
ta

tio
n 

tim
e 

ra
tio

(c)

Fig. 2. The cost of the best paths in the RRT (shown in red) and the RRT∗ (shown in blue) plotted against iterations averaged over 500 trials in (a). The
optimal cost is shown in black. The variance of the trials is shown in (b). A comparison of the running time of the RRT∗ and the RRT algorithms averaged
over 50 trials is shown in (c); the ratio of the running time of the RRT∗ over that of the RRT up until each iteration is plotted versus the number of iterations.

REFERENCES

[1] J. Latombe. Motion planning: A journey of robots, molecules, digital
actors, and other artifacts. International Journal of Robotics Research,
18(11):1119–1128, 1999.

[2] A. Bhatia and E. Frazzoli. Incremental search methods for reachability
analysis of continuous and hybrid systems. In R. Alur and G.J. Pappas,
editors, Hybrid Systems: Computation and Control, number 2993 in
Lecture Notes in Computer Science, pages 142–156. Springer-Verlag,
Philadelphia, PA, March 2004.

[3] M. S. Branicky, M. M. Curtis, J. Levine, and S. Morgan. Sampling-
based planning, control, and verification of hybrid systems. IEEE Proc.
Control Theory and Applications, 153(5):575–590, Sept. 2006.

[4] J. Cortes, L. Jailet, and T. Simeon. Molecular disassembly with RRT-
like algorithms. In IEEE International Conference on Robotics and
Automation (ICRA), 2007.

[5] Y. Liu and N.I. Badler. Real-time reach planning for animated characters
using hardware acceleration. In IEEE International Conference on
Computer Animation and Social Characters, pages 86–93, 2003.

[6] J. T. Schwartz and M. Sharir. On the ‘piano movers’ problem: II.
general techniques for computing topological properties of real algebraic
manifolds. Advances in Applied Mathematics, 4:298–351, 1983.

[7] J.H. Reif. Complexity of the mover’s problem and generalizations.
In Proceedings of the IEEE Symposium on Foundations of Computer
Science, 1979.

[8] L.E. Kavraki, P. Svestka, J Latombe, and M.H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces.
IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996.

[9] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning.
International Journal of Robotics Research, 20(5):378–400, May 2001.

[10] D. Hsu, R. Kindel, J. Latombe, and S. Rock. Randomized kinodynamic

motion planning with moving obstacles. International Journal of
Robotics Research, 21(3):233–255, 2002.

[11] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J.P. How. Real-
time motion planning with applications to autonomous urban driving.
IEEE Transactions on Control Systems, 17(5):1105–1118, 2009.

[12] S. Karaman and E. Frazzoli. Sampling-based motion planning with
deterministic µ-calculus specifications. In IEEE Conference on Decision
and Control (CDC), 2009.

[13] C. Urmson and R. Simmons. Approaches for heuristically biasing RRT
growth. In Proceedings of the IEEE/RSJ International Conference on
Robotics and Systems (IROS), 2003.

[14] D. Ferguson and A. Stentz. Anytime RRTs. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2006.

[15] M. Penrose. Random Geometric Graphs. Oxford University Press, 2003.
[16] J. Dall and M. Christensen. Random geometric graphs. Physical Review

E, 66(1):016121, Jul 2002.
[17] S. Karaman and E. Frazzoli. Incremental sampling-based algorithms for

optimal motion planning. http://arxiv.org/abs/1005.0416.
[18] S. Karaman and E. Frazzoli. Optimal kinodynamic motion planning

using incremental sampling-based methods. In Proceedings of the IEEE
Conference on Decision and Control (CDC), 2010. Submitted.

[19] S. Muthukrishnan and G. Pandurangan. The bin-covering technique for
thresholding random geometric graph properties. In Proceedings of the
sixteenth annual ACM-SIAM symposium on discrete algorithms, 2005.

[20] H. Samet. Design and Analysis of Spatial Data Structures. Addison-
Wesley, 1989.

[21] S. Arya, D. M. Mount, R. Silverman, and A. Y. Wu. An optimal
algorithm for approximate nearest neighbor search in fixed dimensions.
Journal of the ACM, 45(6):891–923, November 1999.

[22] S. Arya and D. M. Mount. Approximate range searching. Computational
Geometry: Theory and Applications, 17:135–163, 2000.


