
Dealing with Difficult Instances
of Object Rearrangement

Athanasios Krontiris and Kostas E. Bekris
Department of Computer Science, Rutgers-the State University of New Jersey, Piscataway, NJ, USA

Emails: tdk.krontir@rutgers.edu, kostas.bekris@cs.rutgers.edu

Abstract—Rearranging multiple objects is a critical skill
for robots so that they can effectively deal with clutter in
human spaces. This is a challenging problem as it involves
combinatorially large, continuous C-spaces involving multiple
movable bodies and complex kinematic constraints. This work
initially revisits an existing search-based approach, which solves
monotone challenges, i.e., when objects need to be grasped
only once so as to be rearranged. The first contribution is the
extension of this technique to a method that addresses many
non-monotone challenges. The second contribution is the use of
either the monotone or of the new non-monotone method as
a local planner in the context of a higher-level task planner
that searches the space of object placements and which provides
stronger guarantees. The paper aims to emphasize the benefit
of using more powerful motion primitives in the context of task
planning for object rearrangement than an individual pick-and-
place. Experiments in simulation using a model of a Baxter
robot arm show the capability of solving difficult instances of
rearrangement problems and evaluate the methods in terms of
success ratio, running time, scalability and path quality.

I. INTRODUCTION

Robot manipulators must be able to rearrange objects to
operate effectively in cluttered human environments. For in-
stance, multiple products may need to be orderly arranged in
factory floors or grocery stores. A robotic assistant may need
to rearrange objects when tidying up a home or rearrange
objects in a fridge when retrieving a refreshment from a
fridge which is unreachable. This paper proposes methods
for efficiently solving hard instances of such tasks through
grasping using a single robotic arm.

Rearrangement is challenging because of the size of the
corresponding configuration space (C-space) and the involved
kinematic constraints. A complete method must operate in the
Cartesian product of the robot’s and the objects’ C-spaces.
The problem becomes harder when the objects are placed
in tight spaces, such as shelves, where the arm has limited
maneuverability. In these situations, a robot needs to carefully
displace objects to reach previously unreachable items. This
paper focuses on these combinatorial and geometric aspects
of rearrangement. Several other issues arise in the real-world,
such as accurate estimation of object locations and robust
execution of grasps, which are not the focus of this effort.

Motivating work in manipulation planning [46] describes
a backtracking search method for detecting the sequence of
objects to be moved so as to reach a desirable, previously
unreachable object. To reduce the size of the search space,
the method focuses on monotone problems, where each object

Fig. 1. An example of a challenge considered in the accompanying simulated
experiments: 16 objects are manipulated by a Baxter arm from an initial
arrangement to a final one, where the letters RSS are spelled.

is allowed to be moved only once. When it is able to solve
problems, it is able to do so relatively fast. After exhausting
all possible orders for moving objects, it can report that it
cannot find a solution. In this way, it is a useful primitive for
identifying and solving simple instances.

Non-monotone challenges are recognized as hard rearrange-
ment instances. There are recent approaches for rearrangement
that can deal with the non-monotone case under certain
conditions [25, 43, 19, 32]. One method simplifies the problem
by requiring that all objects are unlabeled, i.e., interchangeable
and can occupy any pose in their final arrangement [32]. An
alternative imposes a grid for placing the objects and then
uses techniques, such as answer-set programming [25]. Others
view the rearrangement problem as an instance of general
integrated task and motion planning [43] and, in this context,
they evaluate good heuristics for integrated planning [19].

This paper is inspired by these efforts to propose simple
but efficient solutions for hard instances of general object
rearrangement. Specifically, hard problems correspond to:
1. non-monotone instances, where an object needs to be

grasped multiple times to achieve the final arrangement;
2. unique, labeled objects, which need to occupy specific

poses in the final arrangement;
3. tight, cluttered spaces, where it is not easy to displace

objects to free space and bring them back to the desired
arrangement. This is critical for static arms but also for
minimizing the motion of mobile manipulators.
This paper first extends the backtracking search approach

for monotone problems [46] to non-monotone instances. Every

tdk.krontir@rutgers.edu
kostas.bekris@cs.rutgers.edu


time the method considers an object with a blocked path to its
goal, it tries to clear the path by finding appropriate interme-
diate poses for blocking objects. While completeness cannot
be guaranteed beyond tabletop challenges using overhand
grasps, experiments indicate that many challenging instances
in cluttered spaces are solved by this extension.

To address the general case, this paper proposes the use
of the monotone or the non-monotone backtracking search
approach as a local planner in the context of a higher-level
task planner for rearrangement. The task planner used in
the accompanying experiments searches the space of object
arrangements by building a roadmap, similar to PRM [28]. The
nodes correspond to object placements in the world, which are
connected with edges when the local planner for the robotic
arm can transfer objects between the two nodes.

Fig. 2. Success ratio given 30 minutes of
computation when using an individual pick-
and-place action as a local planner in a PRM-
like task planner for rearranging objects in a
shelf. See Section VIII for experimental setup.

A traditional local
planner would be an
individual pick-and-
place, where a single
object is displaced
between two nodes.
Fig. 2 shows that
the success ratio of
solving rearrangement
problems using pick-
and-place goes down
quickly as the number
of objects increases.

The key insight is that the proposed powerful local planners,
especially the non-monotone primitive, can solve hard
instances more reliably, faster and with better path quality,
i.e., fewer objects grasped during the rearrangement. Its
integration with the PRM-based task planner results in a
method that can solve effectively hard instances and achieves
probabilistic completeness.

To significantly speed up online query resolution, it is pos-
sible to take advantage of appropriate preprocessing. Transfer
and transit roadmaps can be pre-built for the arm given the
static geometry and reused for the various objects and their
placement. The idea is related to the “conditional reachability
graph” proposed recently [19] and the “manipulation graph”
approach [40]. While not evaluated here, it is also possible
to define uni- or bi-directional tree versions of the high-level
planner [33, 27] or follow a heuristic search procedure [19].

Simulated experiments using a model of a single Baxter arm
evaluate the methods in a variety of non-monotone, labeled
rearrangement problems, including setups in restricted spaces,
such as objects in shelves. The experiments show that the non-
monotone primitive can solve problems not easily addressable
by other alternatives. The experiments also reveal the required
computation time for finding a solution, the scalability as the
number of objects increases and resulting path quality of the
methods. Smoothing is used to further improve the quality of
the path followed by the arm for a rearrangement solution
given additional computation time.

II. RELATED LITERATURE

Rearrangement planning [4, 38] relates to various lines of
work in the robotics literature.

Planning among Movable Obstacles: A related chal-
lenge is the problem of navigation among movable obsta-
cles (NAMO), which was shown to be NP-hard [51], even
for simple instances with unit square obstacles [13]. Thus,
most efforts have dealt with efficiency [9, 37] and provide
completeness results only for problem subclasses [44, 45].
A probabilistically complete solution was proposed [48], but
works only for simple robots (2-3 DOFs). More recently, a
decision-theoretic framework was presented for NAMO, which
deals with the inherent uncertainty in real tasks [34]. A related
problem is the minimum constraint removal problem, which
seeks to minimize the number of constraints/obstacles along
a path [21, 31]. For this problem an asymptotically optimal
solution has been achieved [22] but the work does not capture
negative interactions between obstacles as in the current work.

Manipulation: Planning for high-DOF robotic arms can be
approached with a “manipulation graph” that contains “transit”
and “transfer” paths [1, 2, 40]. The graph can be constructed
with sampling-based planners [28, 33]. The current paper
employs a similar framework for precomputing manipulation
paths for the arm and employs asymptotically near-optimal
sampling-based planners for constructing the manipulation
graph [15, 36], i.e., roadmap spanners of PRM∗ [27].

Tree sampling-based planners have also been used suc-
cessfully for manipulation planning [5, 6]. A variety of ap-
proaches exist for manipulation planning beyond sampling-
based planners, which could also be employed in the context
of the proposed methods, such as heuristic search [10], or
optimization-based methods, e.g., CHOMP [54, 29].

Manipulation planning among multiple movable obstacles
has been considered for “monotone” problems where each
obstacle can be moved at most once [46]. The current work,
however, can reason about more complex challenges. As-
sembly planning similarly solves multi-body problems but it
focuses on separating a collection of parts and typically the
robot path is ignored [52, 20, 47].

Another paradigm for dealing with cluttered scenes involves
non-prehensile manipulation, such as pushing [11, 16], which
is not addressed in this work, but is a potential extension.

Task and Motion Planning: Rearrangement planning can
be seen as an instance of integrated task and motion planning
[8, 39, 43, 19]. Many approaches employ a high-level symbolic
planner [26, 18]. For instance, geometric constraints can
be incorporated into the high-level language [17], or it is
possible to plan in the cross product of the high-level symbolic
reasoning and the low-level configurations [8]. Multi-modal
roadmaps can deal with the combination of both discrete and
continuous parameters [7, 23, 24]. Recent methods generate
heuristics for symbolic manipulation planning with roadmaps
[19], or discover a symbolic language for manipulation on the
fly [30].



III. PROBLEM SETUP AND NOTATION

Consider a 3D workspace that contains obstacles and:
• A set of k movable rigid-body objects O, where each

object oi ∈ O can acquire a pose pi ∈ Pi ⊆ SE(3). An
arrangement α ∈ A specifies k poses {p1, . . . , pk} for the
objects in O, where pi ∈ Pi. α[O′⊂O] indicates the poses
that the objects O′⊂O occupy according to α.
• An arm able to move objects acquiring arm configura-

tions q ∈ Q. Then, q(pi) is an arm configuration grasping
object oi at pose pi computed with inverse kinematics.

The C-space of the rearrangement problem Q = Q×A is the
Cartesian product of the arm’s C-space and arrangement space.
The collision-free subset does not allow collisions between
the arm, objects and obstacles, with the exception of the arm
grasping the objects.

There are two different types of collision-free configura-
tions: i) Stable: All objects rest on surfaces. ii) Grasping:
An object is grasped and the others are resting. Then, valid
configurations correspond to the union of stable and grasping
configurations, while transition configurations are both stable
and grasping, i.e., in transition configurations, one object is
grasped and resting on a surface, while the rest are just resting.

Furthermore, there are k + 1 different modes m ∈M:
i) A single transit mode: The arm is not carrying an object

and the problem’s configuration is stable. This corresponds
to a planning primitive:

TRANSIT(qI , pF , α),
which computes a collision-free path from arm configura-
tion qI to a grasping configuration q(pF ) for a pose pF of
an object given arrangement α.

ii) k different transfer modes: The problem is in a grasp-
ing configuration for object oi, which corresponds to the
primitive:

TRANSFER(oi, pI , pF , α),
It computes a path to transfer an object o from pose pI to
pose pF without collisions with the objects {O r oi} in
poses specified by arrangement α.

A legal mode change is between the transit mode and one of
the transfer modes or vice versa, only if the final configuration
of the previous mode and the first configuration in the next
mode correspond to the same transition configuration.

Then, the problem’s state space is defined as X : Q ×M,
where its valid subset Xv is defined for valid configurations
and its stable subset Xs is defined for stable configurations.

A rearrangement path π ∈ Π : [0, 1]→ Xv is a continuous
sequence of alternating stable/transit and grasping/transfer sets
of states in Xv with legal mode changes.

Prehensile Rearrangement Problem: Given an initial
state xI = ((qI , αI), tI) ∈ Xs and a final state xF =
((qF , αF ), tF ) ∈ Xs, compute a rearrangement path π ∈ Π :
[0, 1]→ Xv , such that π(0) = xI and π(1) = xF .

IV. FOUNDATIONS

Motivation: This section focuses on a previously proposed
approach for manipulating objects [46] that deals with mono-
tone problem instances. A monotone path moves each object

at most once. Fig. 3 (left) provides an example of a monotone
problem ignoring the arm. For such problems, the algorithm
[46] performs a backtracking search in the space of possible
orders of transferring objects directly to their final poses. Fig.
3 (right) shows possible orders considered given object B is
moved first, which results in a solution.

Fig. 3. (left) An example of two arrangements for four objects (initial: light
colored, final: darker colored) and a possible order that allows their monotone
rearrangement for linear paths. (right) Corresponding backtracking search.

Algorithm: The “monotone Rearrangement Search” algorithm
(mRS) is given in Alg. 1 and is an adaptation of an existing
manipulation approach for clearing a path to an unreachable
object [46]. The original approach was searching backwards
to clear a path to an unreachable object but in the case of
rearrangement the two search directions are equivalent and
forward search is easier to understand. The method receives:
• an object o to be transferred given that the manipulator’s

last configuration was q,
• the set of objects OR (“remaining objects”) not yet moved

to a final pose along the current branch of the search tree,
• the current and final arrangements: αC and αF .

Algorithm 1: mRS(o, q,OR, αC , αF )

1 πN ← TRANSIT(q, αC [o], αC);
2 πM ← TRANSFER(o, αC [o], αF [o], αC);
3 if (πU ← {πN | πM}) is collision free then
4 αC [o]← αF [o];
5 if OR == ∅ then
6 return πU ;
7 for each or ∈ OR do
8 π ← mRS(or, q(αF [o]),OR r or, αC , αF );
9 if π 6= ∅ then return {πU | π};

10 return ∅;

The method first computes paths for grasping the object o
at its current pose αC [o] and for transferring it to its final pose
αF [o] (lines 1-2). If the concatenation of the resulting paths
is collision-free (line 3), the object is transferred (line 4). If
this was the last remaining object (line 5), then the problem
has been solved (line 6). Potentially at this point, the arm can
return to its initial or safe configuration. Otherwise, the method
recursively calls itself for all remaining objects that have not
been transferred to their final pose (lines 7-8). If any of those
calls is successful, a solution has been found and the path πU
for object o can be concatenated to the paths for the remaining
objects in OR (line 9). The method needs to be initially called
for all possible objects, i.e., call ∀o : mRS(o, qI ,Oro, αI , αF ).



Properties: Assuming (probabilistic) completeness for the
TRANSIT and TRANSFER primitives, the method is trivially
(probabilistically) complete for monotone challenges since it
exhaustively considers all possible orders for transferring the
objects to their final arrangement with monotone paths. Simi-
larly, the method fails if it is necessary to find an intermediate
position for an object so as to solve the problem. In the worst
case, the method needs to visit a complete search tree and
it has to call the TRANSIT and TRANSFER primitives an
exponential number of times. While this is bad asymptotic
performance - the problem is hard after all - in practice, it can
return early, i.e., as soon as a solution has been found. Even
if it fails, the number of calls is typically orders of magnitude
smaller than the worst case, as most branches will fail early.

This method already solves tabletop tasks where the arm
can use overhand grasps at both the initial and final poses
as long as there is no overlap between these poses. But this
requirement is not satisfied by all tabletop challenges, since
frequently there will be overlap between the initial and final
poses of objects in a tabletop setup. Moreover, for objects
in shelves, the arm’s maneuverability is limited, overhand
grasps are frequently impossible and non-monotone challenges
arise easily. Consider Fig. 4 (left), referred here as “simplified
Towers of Hanoi”, where B and C need to be placed in inter-
mediate poses so that A reaches its final pose. A setup like this
one can arise when a manipulator has to reach occluded objects
in shelves or move them between bins while keeping them in
the same order. Such non-monotone challenges motivate the
development of the following methods.

V. AN EXTENSION FOR NON-MONOTONE INSTANCES

Motivation: This section extends the previous approach to the
case that an object’s path to its final pose is blocked. In many
cases it is possible to easily evacuate the blocking objects Ob.
Specifically, the method employs a subroutine that searches
for a monotone path of the blocking objects Ob so as evacuate
the path of the blocked object. While the subroutine does not
guarantee that it will always find a solution when one exists,
experiments suggest that many non-monotone rearrangement
problems are addressable in this manner.

For instance, consider the “simplified Towers of Hanoi”
example of Fig. 4 and the case object A is at the top of the
search tree. The path to A’s final pose is obstructed by B
and C. Then a subproblem arises (the top triangle in Fig. 4
(right)): “Move B and C to intermediate poses so that A can
move to its final pose”. The intermediate poses for B and C
should correspond to the shortest manipulation path among
the poses that allow the transfer of object A. In this case, the
method will work regardless of the order with which objects
B and C are considered. For instance, if B is selected, it can
move to the front/open part of the second bin, given A’s path
as a constraint. But then it is blocked by C. Then C needs
to evacuate both A’s and B’s paths and moves further up the
second bin. This results in the configuration at the top right
corner of Fig. 4 (right).

Fig. 4. (left) A non-monotone challenge: 3 objects from the left shelf must
be transferred to the right shelf in the same order. (right) The corresponding
search tree starting with object A for plRS. Every time an object cannot be
moved to its final pose, the remaining objects need to clear its path.

At that point objects B and C still have not reached their
goal. Then, there are two possible orders to consider. Either
B moves first (left subtree) or C moves first (right subtree). If
B moves first, the remaining problem is monotone and this
branch leads to success. If C moves first, then its path is
blocked by B and another subproblem is defined (the lower
right triangle in Fig. 4 (right)): “Move B to an intermediate
position so that C can then move to its final pose”. If B moves
back to the first bin, as is shown in the figure, the subproblem
for C is solved but this branch fails, since C is at its goal and
blocks the path of B.

If C is selected to evacuate first A’s path, it can be moved
in an unobstructed manner to the opening of the second bin.
Then, object B still needs to evacuate A’s path. It will find
the same position as C to clear A’s path. Its path is blocked
by C, which can be pushed further up the second bin so as to
allow B to follow its path and the problem will be solved.
Algorithm: The “piecewise linear non-monotone Rearrange-
ment Search” algorithm (plRS) is given in Alg. 2 and directly
extends its monotone counterpart.

Algorithm 2: plRS(o, q,OR, αC , αF )

1 πN ← TRANSIT(q, αC [o], αC [O \ OR]);
2 πM ← TRANSFER(o, αC [o], αF [o], αC [O \ OR]);
3 if (πU ← {πN | πM}) is collision free then
4 αC [o]← αF [o];
5 if OR == ∅ then
6 return πU ;
7 for each or ∈ OR do
8 π ← plRS(or, q(αF [o]),OR r or, αC , αF );
9 if π 6= ∅ then return {πU | π};

10 else
11 ob ← a blocking object along πU ;
12 if ob ∈ OR then
13 {p, αC , π

′} ← CLEAR(ob, q,OR \ ob, αC , πU );
14 if π′ 6= ∅ then
15 π ← plRS(o, q(p),OR, αC , αF );
16 if π 6= ∅ return {π′ | π};
17 return ∅;



The plRS method has two differences from mRS:
• The transit and transfer paths it computes for object o must

be collision-free only with objects that have been already
moved to their target, i.e., in the set O \ OR. For the
remaining objects OR, minimum constraint removal paths
are computed [22].
• It does not directly return failure if the path of object o to
its final pose αF [o] is in collision with one of the remaining
objects OR (lines 10-16).

In the case the path is not collision-free, the algorithm
considers the first blocking object ob (line 11). If ob has
not been moved to its final pose, i.e., it is in the list of
“remaining objects” OR (line 12), then a subroutine CLEAR is
called to clear o’s path from object ob (line 13). The CLEAR
function receives the path πU of object o as a constraint. If
the subproblem of CLEAR can be solved and ob can evacuate
o’s path (line 14), then the plRS algorithm is called again for
object o (line 15), so as to try again to move it along its path.
If this eventually succeeds - by potentially making additional
calls to CLEAR- the path is returned (line 16).

Alg. 3 provides the CLEAR function, which first finds an
intermediate pose p for the calling object o and the corre-
sponding path πU (line 1). The intermediate pose must be
(i) collision-free with the current arrangement αC [O \ OR]
of objects that have reached their target; and (ii) it does not
collide with any configuration along the input constraint paths
πB. Among the possible poses, the approach selects the one
for which it can compute a minimum constraint removal path
from the current arm configuration q given all objects in OR.
If there are multiple poses with paths that have the same
number of minimum constraints, the method returns the one
corresponding to the shortest path. Section VII will describe
how these reachability computations can be accelerated using
precomputation.

Algorithm 3: CLEAR(o, q,OR, αC , πB)

1 {p, πU} ← INTERMEDIATE POSE(αC [O \ OR], πB, q);
2 if πU is collision free then
3 αC [o]← αF [o];
4 return {p, αC , πU};
5 else
6 ob ← a blocking object along πU ;
7 if ob ∈ OR then
8 {p′, αC , π

′} ← CLEAR(ob, q,OR\ob, αC , πU∪πB);
9 if π′ 6= ∅ then

10 {p, αC , π} ← CLEAR(o, q(p′),OR, αC , πB);
11 if π 6= ∅ return {p, αC , π

′|π};
12 return ∅;

If a collision-free path πU to an intermediate pose p is found
(line 2), the object is moved there, and its pose, the updated
assignment and the corresponding path are returned (lines 3-
4). Otherwise, the path is blocked by another object and the
function is called recursively for the blocking object, similar
to what happened in plRS (lines 5-11).

Properties: The mRS approach from the previous section
cannot solve tabletop challenges where there is an overlap

between the initial and final poses. Nevertheless, it is easy to
argue that plRS can solve such challenges where all objects are
accessible with overhand grasps under the following sparsity
requirement:
• For each pair of poses for object oi, there is enough space

to place the remaining objects in poses that are collision-
free among themselves and with oi’s poses regardless of the
order with which the blocking objects are considered.
Every time the algorithm discovers a path that is blocked un-

der the above assumption, it can always evacuate the blocking
agents from this path to a set of collision-free poses. In such
setups, every time CLEAR is called from plRS, there will be
no recursion needed. For every blocking object there is going
to be an available collision-free pose regardless of the order
the objects are considered. This property, however, still leaves
a large set of non-monotone challenges for which it is not
possible to argue that the algorithm will find a solution. The
recursive nature of CLEAR, however, is helping in practically
addressing a wider set of non-monotone instances as the
accompanying experimental section shows.

Fig. 5. (left) An example problem where the non-monotone extension of
the backtracking search approach fails. (right) The corresponding search tree
given object B as the first object. The subproblem succeeds but then object
A cannot be returned to its target pose.

For the non-monotone problem of Fig. 5 (left), plRS will
fail. When object A is considered first, object B needs to be
cleared. But object B is not reachable by the arm. When object
B is considered to be moved first, the search tree in Fig. 5
(right) shows that A can be cleared from object B’s path but
then A cannot reach its own target. Solving such challenges
relates to complete multi-robot planning [49, 35, 50, 53, 41],
which is itself hard. Nevertheless, complete methods will end
up coupling objects and try to plan in a composite space, which
increases computational cost.

VI. USE OF THE PRIMITIVES AS LOCAL PLANNERS

Motivation: This section considers the above primitives as
local planners within a higher-level task planner to search
the space of possible object arrangements and solve problems
like the one in Fig. 5. The benefit of these primitives is they
can connect an individual arrangement to a relatively large
number of different ones. This is an advantage over pick and
place, which can only connect arrangements that differ only
by a single object pose [19, 43]. The non-monotone extension
is more powerful but more expensive than the monotone
primitive, which is experimentally shown to be advantageous.
The high-level task planning process can be performed in
many different ways, e.g., through heuristic search [19], or
in RRT-like fashion. Here a roadmap, similar to a PRM is used,
referred to as Rearrange PRM and summarized in Alg. 4.



Algorithm: The high-level planner builds a roadmap, where
nodes are object arrangements. Initially, the roadmap starts
with the initial and final arrangements αI and αF (line 1).
Edges correspond to local rearrangement paths between two
nodes. Such paths can be computed either by an individual
pick-and-place, or by the monotone primitive mRS or by the
non-monotone variant plRS. While the problem is not solved
(line 2), the method samples new random arrangements αrand

(line 3). Then, based on a distance estimate in the space of
arrangements, a set of neighboring arrangements Anear in
the roadmap is returned (line 4). For each neighbor αnear, a
connection is attempted between the neighbor and the random
arrangement (lines 5-10) with the preferred primitive. In the
algorithmic, the non-monotone variant is used (line 7).

Algorithm 4: Rearrange PRM(q,O, αI , αF )

1 G ← {V ← {αI , αF }, E ← {∅}};
2 while (Π← FIND PATH(G, αI , αF )) == ∅ do
3 αrand ← SAMPLE ARRANGEMENT();
4 Anear ← CLOSEST(G, αrand);
5 for αnear ∈ Anear do
6 for each o ∈ O do
7 π ← plRS(o, q,O r o, αrand, αnear);
8 if π 6= ∅ then
9 E ← E ∪ {(αrand, α), π};

10 BREAK;
11 return Π;

Similar to PRM, this approach can be parameterized based
on the selection of:

a) Sampling arrangements: On top of uniform sampling, a
heuristic choice is to include with certain probability (5%)
the selection of object poses either from the initial or the
goal arrangement.

b) Distance metric: An estimation of the number of neces-
sary transfers between two input arrangements can be used
(e.g., through problem relaxations). The implementation
uses the sum of the distances between poses.

c) Number of neighbors: The value from PRM∗ [27] and
a linear search for closest neighbors were used. If path
quality is not a priority, then if two arrangements are already
in the same connected component, then they do not need
to be connected. Alternatively, a roadmap spanner can be
applied where only useful edges in terms of path quality are
considered [36].

Properties: To keep the arguments simple, consider a version
of Rearrange− PRM, where uniform sampling is used and
all roadmap nodes are returned as neighbors. Then, consider
a solution path π for a prehensile rearrangement problem
(X, xI , xF ). The solution path can be decomposed into a
sequence of segments {π1, π2, . . . , πm}, where each πi corre-
sponds to a TRANSIT and a TRANSFER operation for an object.
Denote the object moved during path segment πi as oi. The
start state of πi is xi−1 = ((qi−1, αi−1), TRANSIT) and the
final state is xi = ((qi, αi), TRANSFER), where qi = q(αi[oi])
(and q0 = qI ).

Given the algorithm samples the start arrangement αi−1 of
xi−1 and the final arrangement αi of xi for segment πi, it will
manage to connect them using any of the considered primitives
(pick-and-place, mRS or plRS). This is because connecting the
two states xi and xi−1 can be achieved with an individual
pick-and-place, since all objects are in the same pose, with
the exception of oi. Since all arrangements can be eventually
sampled and they can be pair-wise connected with any of the
primitives, the approach will eventually generate the solution
path π in every case.

This raises the question of why should one use the rear-
rangement search primitives since the method is probabilis-
tically complete even for a pick-and-place local planner. For
a pick and place to succeed, however, it has to be that the
two arrangements are different only by a single pose. This
relates to the probability of sampling the right sequence of
arrangements in PRM. Sampling in continuous space for two
arrangements of k objects that have the same k− 1 poses has
probability 0. Nevertheless, the search primitives can work
successfully in connecting pairs of arrangements that do not
share any pose. For instance, the mRS primitive will succeed, if
there is a δ-ball around each arrangement αi along a segment
π′i so that for all α′i in the δ-ball: i) the path segment π′i
connecting arrangements α′i−1 to α′i is also part of a solution
path π′, and ii) the path segment π′i remains monotone. The
probability a local segment π′i to be monotone has positive
probability.

The issue with pick-and-place can be addressed by restrict-
ing the problem to a discrete set of poses and give up on
prob. completeness, which is actually a practical way of taking
advantage of preprocessing. Alternatively, one can consider a
tree-based approach instead of the PRM, where given an input
arrangement a new arrangement is generated with the pick and
place primitive. The problem is, however, that the number of
possible new arrangements that can be generated at each step
of the algorithm is small, i.e., equal to the number of objects
k. On the other hand, the rearrangement search primitives can
connect a continuum of arrangement pairs.

The resulting tradeoff is computational in nature. Consider a
different decomposition of the same solution π into segments
{π̂1, π̂2, . . . , π̂n}, where each segment π′i corresponds to a
monotone subproblem. Such a decomposition exists, because
the initial pick-and-place decomposition exists and is also
monotone. The length of the pick-and-place decomposition
m is typically significantly greater than the length n of the
monotone one, which in turn is greater than a decomposition
to subproblems of plRS. This means that a significantly larger
number of arrangements needs to be sampled and connected
until the pick-and-place sequence is found. On the other hand,
there is an increased cost of generating a monotone segment
π′i versus generating a pick-and-place segment πi, since it
involves evaluating a larger number of transit/transfer paths.
This cost has to be also paid for failed connection attempts.
As the experiments accompanying this paper show, and as the
authors’ experience suggests, this tradeoff turns out to be in
favor of the more expensive connection primitive.



VII. HELPFUL PREPROCESSING

In order to speed up online query resolution, it is possible
to preprocess a scene given the the arm’s placement, the static
obstacles and the geometry of the movable obstacles.

Preprocessing: The first step is the sampling of a discrete
set of useful stable poses P̂ reachable by the arm for the
movable obstacles. These are poses that can provide transition
states. For each pose, multiple grasps for the end-effector are
sampled. Then through inverse kinematics it is possible to get
the corresponding arm configurations.

These configurations are used as seeds during the generation
of sampling-based roadmaps [27]. One roadmap is built for
each mode of the rearrangement problem. One roadmap is
constructed for the transit mode, which corresponds just to the
arm moving in the environment and avoiding collisions with
the obstacles. Then, one roadmap is built for each transfer
mode and corresponds to the arm grasping one of the objects.
If all of the k movable objects have different geometries, then
k + 1 pairs of transit and transfer roadmaps are generated.
If multiple objects share the same geometry, they can use
the same roadmap. Thus, for geometrically similar objects,
a single pair of roadmaps is sufficient.

Then, it is possible to precompute collision information
and minimize the cost of collision checking during the online
phase. Objects are placed in the poses P̂ and then for each
edge of the roadmap, the set of object poses that lead into
collisions are discovered and stored. This type of precompu-
tation is similar to the “conditional reachability graph” data
structure [19].

Query Resolution: During the online operation of the
methods, every time that a TRANSIT and a TRANSFER primitive
are executed, a multi-goal A∗ algorithm is executed on the
corresponding precomputed roadmaps [12, 14]. The multiple
goals for the A∗ correspond to multiple potential grasps for
the pose of the object. During this process, when an edge
of the roadmap is explored, instead of performing collision
checks, the set of colliding poses for the edge discovered
during the precomputation are tested against the poses in the
current arrangement αC . If there is any overlap, then the edge
is in collision. In the case of plRS, the same information can
also facilitate the computation of minimum constraint removal
paths.

If the poses corresponding to the initial and final ar-
rangement of a prehensile manipulation problem are known
during the offline phase, then no actual collision checks need
to be performed during online query resolution. Otherwise,
collision checking needs to be performed only for these
poses. Any pose that is used as an intermediate free pose in
INTERMEDIATE POSE or for SAMPLE ARRANGEMENT can come
from the list of precomputed poses.

Considering only the precomputed poses affects the
method’s probabilistic completeness as it will have to operate
over only a discrete set of poses. To provide with prob.
completeness in this setup, if the algorithm fails to find a
solution given the precomputation, then the set of considered
poses for the objects needs to be augmented online.

VIII. EVALUATION

Experimental Setup: The methods have been tested in 3
workspaces with a model of a Baxter arm: “grid@tabletop”
(Fig. 6 (top)), “grid@shelf” (Fig. 6 (bottom)) and “RSS
challenge” (Fig. 1). The “RSS challenge” involves 6, 11 or
16 boxes placed on a tabletop. Initially the arrangement is
random and the objective is to form the characters: “R”,
“RS” and “RSS”. The “grid@tabletop” benchmark places 2
to 14 objects on a tabletop. The “grid@shelf” challenge
has 2 to 8 cylinders placed in a shelf that limits the arm’s
reachability and does not allow overhand grasps. In both cases,
the objective is to rearrange the objects from a random to a
grid arrangement. Four different methods are tested: (a) mRS,
(b) plRS, (c) the Rearrange PRM approach with mRS and (d)
the Rearrange PRM with plRS. The time limit provided to
the methods was 30 mins. 20 experiments were performed for
each combination of method and environment.

Fig. 6. (top) The “grid@tabletop” problem. An initial and the final setup.
(bottom) The “grid@shelf” problem. An initial and the final setup.

Results: Fig. 7 provides the results for the “RSS challenge”
and the two primitives. While for 6 objects, both methods were
able to find a solution because the challenge is monotone,
the success rate of the monotone solver goes down quickly
with additional objects. The non-monotone solver, however,
manages to solve all problems. In terms of running time,
there is an increase for plRS as the number of objects
increases but overall it performs good across the board. The
Rearrange PRMs mimic the running times of their primitives.

Fig. 7. (left) Success ratio in the “RSS challenge”: plRS always succeeds.
(right) Execution time for successful runs for 6, 11 and 16 objects.

Fig. 8 provides the results for “grid@tabletop”. The success
ratio of the monotone solutions drops above 10 objects. The
non-monotone solver and its PRM counterpart can solve the
majority of instances up to 14 objects. The non-monotone
solver runs slightly slower in the smaller examples. The



difference is more significant in the larger-scale examples but
the monotone solver fails in most cases there. The running
time of the Rearrange PRMs tracks those of the primitives as
they typically succeed because the first connection works.

Fig. 8. (top left) Success ratio for the different methods in the
“grid@tabletop” benchmark. Rearrange PRM(plRS) has the best success
ratio. (remaining) Execution time for successful runs for 4, 8 and 14 objects.

Fig. 9 provides the results for “grid@shelf”. Here the arm
has reduced reachability and is not able to use overhand grasps.
As the number of objects increases, the monotone solver’s
success ratio goes down quickly. The non-monotone primitive
has good success ratio, despite the difficulty of the challenge
and the limited reachability. Using the non-monotone primitive
within Rearrange PRM results in even better success rate.
Only two runs were not completed for 8 objects. As Fig. 2
shows, using pick-and-place as the local planner in this case
results in significantly lower success ratio.

Fig. 9. (top left) Success ratio for the different methods in the “grid@shelf”
benchmark. Rearrange PRM with plRS has the best success ratio. (remain-
ing) Execution time for successful runs for 2, 6 and 8 objects.

There is an expected increase in running time when transi-
tioning from the monotone to the non-monotone solver. The
Rearrange PRM(mRS) method requires many nodes to solve
6 object challenges resulting in a high average time in this
case. The Rearrange PRM(plRS) method has an increased
cost for 8 objects but these are the hardest problems. The
graphs show the average time only for successful runs. The
Rearrange PRM(plRS) manages to solve problem instances
that the other methods did not manage to address within the
time limit. These harder instances lead to increased averages.

Table 10 provides the average path length found for the
“grid@tabletop” problem. The outcome is similar across the
methods with the exception of using pick-and-place actions.
For larger-scale problems, the Rearrange PRM(plRS) per-
forms effectively in terms of path quality.

Algorithm 2 4 6 8
mRS 18.29 35.55 44.12 N/A
plRS 15.76 31.36 57.15 78.06

PRM(mRS) 18.16 43.87 84.34 N/A
PRM(plRS) 15.85 31.36 58.79 59.81

PRM(Pick&Place) 28.18 N/A N/A N/A

Fig. 10. Average path duration in seconds for the “grid@shelves” problem.

IX. DISCUSSION

This work proposes a primitive for rearrangement, which
provides improved connectivity among object arrangements
relatively to pick-and-place actions. The method extends an
existing technique [46] to non-monotone problems. It is inte-
grated with a higher-level planner, which uses the proposed
primitive as a local planner to connect object arrangements,
and achieves probabilistic completeness. Experiments show
that the proposed primitive solves many non-monotone chal-
lenges by itself. The integration with the higher-level task
planner results in the most efficient solution in terms of success
ratio, path quality and scalability, especially in setups with lim-
ited reachability, such as shelves. Typically, few arrangements
are sampled by the high-level planner to solve relatively hard
instances when the primitive is failing by itself.

The method should be tested with different geometry ob-
jects, general grasps and object poses, which in principle it can
already address. A more formal study of plRS’s properties
is also desirable, as well as task planning alternatives to
PRM. Preliminary indications with a bidirectional RRT show
reduced computation time and similar performance between
the primitives. For RRT, it makes sense to generate versions
of the primitives that do not connect two arrangements but
partially extend an initial towards a target one.

Using two arms can simplify a problem, as one of them can
grasp an object to clear the scene and the other can perform
transfers. The current setup can also be integrated with non-
prehensile [11, 16] and mobile manipulation [19]. Pushing can
easily replace some grasps. Mobility does not significantly
alter the combinatorial aspects of the problem. Cloud comput-
ing can also be considered to improve performance through
parallelization [3]. An alternative but important direction is to
adapt complete but efficient multi-robot planning algorithms in
the context of manipulation [50, 42]. Future efforts should also
focus on the computation of robust rearrangement trajectories
given actuation and observation noise.

ACKNOWLEDGMENTS

This work is supported by NSF awards IIS-1451737 and CCF-
1330789. Any opinions or findings expressed in this paper do not
necessarily reflect the views of the sponsors. The authors would like
to thank the anonymous RSS reviewers for their comments.



BIBLIOGRAPHY

[1] R. Alami, T. Siméon, and J.-P. Laumond. A Geometrical
Approach to Planning Manipulation Tasks. In Proc. of Interna-
tional Symposium on Robotics Research, pages 113–119, 1989.

[2] R. Alami, J.-P. Laumond, and T. Siméon. Two Manipulation
Planning Algorithms. In J.-P. Laumond and M. Overmars,
editors, Algorithms for Robotic Motion and Manipulation. A.
K. Peters, Wellesley, MA, 1997.

[3] K. E. Bekris, R. Shome, A. Krontiris, and A. Dobson. Cloud
Automation: Precomputing Roadmaps for Flexible Manipula-
tion. IEEE Robotics and Automation Magazine (Special Issue
on Emerging Advances and Applications in Automation), 2015.

[4] O. Ben-Shahar and E. Rivlin. Practical Pushing Planning for
Rearrangement Tasks. IEEE Transactions on Robotics and
Automation, 14(4), August 1998.

[5] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner.
Manipulation Planning on Constraint Manifolds. In Proc. of
the IEEE Intern. Conf. on Robotics and Automation (ICRA),
2009.

[6] D. Berenson, S. S. Srinivasa, and J. J. Kuffner. Task Space
Regions: A Framework for Pose-Constrained Manipulation
Planning. The International Journal of Robotics Research
(IJRR), 30(12):1435–1460, 2012.

[7] T. Bretl, S. Lall, J.-C. Latombe, and S. Rock. Multi-step
Motion Planning for Free-Climbing Robots. In Workshop on
the Algorithmic Foundations of Robotics (WAFR), 2004.

[8] S. Cambon, R. Alami, and F. Gravot. A Hybrid Approach to In-
tricate Motion, Manipulation, and Task Planning. International
Journal of Robotics Research, (28), 2009.

[9] P. C. Chen and Y. K. Hwang. Practical Path Planning Among
Movable Obstacles. In Proc. of the IEEE Intern. Conf. on
Robotics and Automation, pages 444–449, 1991.

[10] J. B. Cohen, S. Chitta, and M. Likhachev. Search-based
Planning for Manipulation with Motion Primitives. In Proc.
of the IEEE Intern. Conf. on Robotics and Automation (ICRA),
2010.

[11] A. Cosgun, T. Hermans, V. Emeli, and M. Stilman. Push
Planning for Object Placement on Cluttered Table Surfaces.
In Proc. of the IEEE Intern. Conf. on Intelligent Robots and
Systems (IROS), 2011.

[12] D. Davidov and S. Markovitch. Multiple-Goal Heuristic Search.
Journal of Artificial Intelligence Research, pages 417–451,
2006.

[13] E. Demaine, J. O’Rourke, and M. L. Demaine. Pushpush and
push-1 are NP-hard in 2D. In Proc. of the 12th Canadian Conf.
on Computational Geometry, pages 211–219, 2000.

[14] A. Dobson and K. E. Bekris. Improved Heuristic Search for
Computing Sparse Data Structures for Motion Planning. In
Symposium on Combinatorial Search (SoCS), Prague, Czech
Republic, 2014.

[15] A. Dobson, A. Krontiris, and K. E. Bekris. Sparse Roadmap
Spanners. In Workshop on the Algorithmic Foundations of
Robotics (WAFR), 2012.

[16] M. R. Dogar and S. S. Srinivasa. A Framework for Push-
Grasping in Clutter. In Robotics: Science and Systems (RSS),
2011.

[17] C. Dornhege, M. Gissler, M. Teschner, and B. Nebel. Integrating
Symbolic and Geometric Planning for Mobile Manipulation.
Denver, CO, 2009. IEEE International Workshop on Safety,
Security and Rescue Robotics (SSRR), IEEE.

[18] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras.
Combining High-Level Causal Reasoning with Low-Level Ge-
ometric Reasoning and Motion Planning for Robotic Manip-
ulation. In IEEE Internation Conference on Robotics and
Automation (ICRA), pages 4575–4581, 2011.

[19] Caelan Reed Garrett, Tomás Lozano-Pérez, and Leslie Pack

Kaelbling. Ffrob: An efficient heuristic for task and motion
planning. In International Workshop on the Algorithmic Foun-
dations of Robotics (WAFR), 2014.

[20] D. Halperin, J.-C. Latombe, and R. H. Wilson. A General
Framework for Assmbly Planning: the Motion Space Approach.
Algorithmica, 26(3-4):577–601, 2000.

[21] K. Hauser. The Minimum Constraint Removal Problem with
Robotics Applications. In Workshop on the Algorithmic Foun-
dations of Robotics (WAFR), 2012.

[22] K. Hauser. Minimum Constraint Displacement Motion Plan-
ning. In Robotics: Science and Systems (RSS), 2013.

[23] K. Hauser and J.-C. Latombe. Multi-Modal Planning in Non-
Expansive Spaces. International Journal of Robotics Research
(IJRR), 29(7):897–915, 2010.

[24] K. Hauser and V. Ng-Thow-Hing. Randomized Multi-Modal
Motion Planning for a Humanoid Robot Manipulation Task.
International Journal of Robotics Research, 2011.

[25] G. Havir, G. Ozbilgin, E. Erdem, and V Patoglu. Geometric
Rearrangement of Multiple Moveable Objects on Cluttered
Surfaces: A Hybrid Reasoning Approach. In IEEE International
Conference on Robotics and Automation (ICRA), 2014.

[26] L. P. Kaelbling and T. Lozano-Pérez. Hierarchical Task and
Motion Planning in the Now. In IEEE International Conference
on Robotics and Automation (ICRA), 2011.

[27] S. Karaman and E. Frazzoli. Sampling-based Algorithms for
Optimal Motion Planning. International Journal of Robotics
Research (IJRR), 30(7):846–894, June 2011.

[28] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars.
Probabilistic Roadmaps for Path Planning in High-Dimensional
Configuration Spaces. IEEE Transactions on Robotics and
Automation, 12(4):566–580, 1996.

[29] J. King, M. Klingensmith, C. Dellin, M. Dogar, P. Velagapudi,
N. Pollard, and S. S. Srinivasa. Pregrasp Manipulation as
Trajectory Optimization. In Robotics: Science and Systems
(RSS), 2013.

[30] G. Konidaris, L.P. Kaelbling, and T. Lozano-Perez. Constructing
Symbolic Representations for High-Level Planning. In Asso-
ciation for the Advancement of Artificial Intelligence (AAAI)
conference, 2014.

[31] A. Krontiris and K. E. Bekris. Computational Tradeoffs of
Search Methods for Minimum Constraint Removal Paths. In
Symposium on Combinatorial Search (SoCS), Dead Sea, Israel,
2015.

[32] A. Krontiris, R. Shome, A. Dobson, A. Kimmel, and K. E.
Bekris. Rearranging similar objects with a manipulator using
pebble graphs. In IEEE Humanoids, Madrid, Spain, 2014.

[33] S. M. LaValle and J. J. Kuffner. Randomized Kinodynamic
Planning. International Journal of Robotics Research (IJRR),
20:378–400, May 2001.

[34] M. Levinh, J. Scholz, and M. Stilman. Hierarchical Decision
Theoretic Planning for Navigation Among Movable Obstacles.
In Proc. of the Workshop on the Algorithmic Foundations of
Robotics, 2012.

[35] R. Luna and K. E. Bekris. Efficient and Complete Centralized
Multi-Robot Path Planning. In International Conference on
Intelligent Robots and Systems (IROS), 2011.

[36] J. Marble and K. E. Bekris. Asymptotically Near-Optimal Plan-
ning with Probabilistic Roadmap Spanners. IEEE Transactions
on Robotics, 29(2):432–444, 2013.

[37] D. Nieuwenhuisen, A. Frank van der Stappen, and M. H.
Overmars. An Effective Framework for Path Planning amidst
Movable Obstacles. In Proc. of the Workshop on the Algorithmic
Foundations of Robotics (WAFR), 2006.

[38] J. Ota. Rearrangement Planning of Multiple Movable Objects.
In Prof. of the IEEE Intern. Conference on Robotics and
Automation (ICRA), 2004.

[39] E. Plaku and G. Hager. Sampling-based Motion Planning with



Symbolic, Geometric, and Differential Constraints. In IEEE
International Conference on Robotics and Automation (ICRA),
2010.

[40] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani. Manip-
ulation Planning with Probabilistic Roadmaps. International
Journal of Robotics Research (IJRR), (23), 2004.

[41] K. Solovey and D. Halperin. k-Color Multi-Robot Motion
Planning. In Proceedings of the 10th International Workshop on
the Algorithmic Foundations of Robotics (WAFR), pages 191–
207, 2012.

[42] K. Solovey, O. Salzman, and D. Halperin. Finding a Needle
in an Exponential Haystack: Discrete RRT for Exploration
of Implicit Roadmaps in Multi-Robot Motion Planning. In
Workshop on the Algorithmic Foundations of Robotics (WAFR),
2014.

[43] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and
P. Abbeel. Combined Task and Motion Planning through
an Extensible Planner-Independent Interface Layer. In IEEE
International Conference on Robotics and Automation (ICRA),
2014.

[44] M. Stilman and J. Kuffner. Navigation among Movable Obsta-
cles: Realtime Reasoning in Complex Environments. In Journal
of Humanoid Robotics, pages 322–341, 2004.

[45] M. Stilman and J. J. Kuffner. Planning Among Movable
Obstacles with Artificial Constraints. In Proc. of the Workshop
on the Algorithmic Foundations of Robotics (WAFR), 2006.

[46] M. Stilman, J. Schamburek, J. J. Kuffner, and T. Asfour.
Manipulation Planning Among Movable Obstacles. In IEEE
International Conference on Robotics and Automation, 2007.

[47] S. Sundaram, I. Remmler, and N. M. Amato. Disassembly
Sequencing Using a Motion Planning Approach. In IEEE Int.
Conf. on Robotics and Automation (ICRA), pages 1475–1480,
Washington, D.C., May 2001.

[48] J. van den Berg, M. Stilman, J. J. Kuffner, M. Lin, and
D. Manocha. Path Planning Among Movable Obstacles: A
Probabilistically Complete Approach. In Workshop on the
Algorithmic Foundations of Robotics (WAFR), 2008.

[49] J. van den Berg, J. Snoeyink, M. Lin, and D. Manocha. Cen-
tralized Path Planning for Multiple Robots: Optimal Decoupling
into Sequential Plans. In Robotics: Science and Systems (RSS),
2009.

[50] G. Wagner, M. Kang, and H. Choset. Probabilistic Path Planning
for Multiple Robots with Subdimensional Expansion. In IEEE
Int. Conf. on Robotics and Automation (ICRA), 2012.

[51] G. Wilfong. Motion Planning in the Presence of Movable
Obstacles. In Proc. of the 4th Annyal Symp. of Computational
Geometry, pages 279–288, New York City, NY, USA, 1988.
ACM.

[52] R. H. Wilson and J.-C. Latombe. Geometric Reasoning about
Mechanical Assembly. Artificial Intelligence Journal, 71(2):
371–396, 1994.

[53] J. Yu and S. M. LaValle. Multi-agent Path Planning and
Network Flow. In Workshop on the Algorithmic Foundations
of Robotics (WAFR), 2012.

[54] M. Zucker, N. Ratliff, A. Dragan, M. Pivtoraiko, M. Klingen-
smith, C. Dellin, J. A. Bagnell, and S. S. Srinivasa. CHOMP:
Covariant Hamiltonian Optimization for Motion Planning. In-
ternational Journal of Robotics Research (IJRR), 2013.


	Introduction
	Related Literature
	Problem Setup and Notation
	Foundations
	An Extension For Non-Monotone Instances
	Use of the Primitives as Local Planners
	Helpful Preprocessing
	Evaluation
	Discussion

