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Abstract—This paper explores the application of Koopman
operator theory to the control of robotic systems. The operator
is introduced as a method to generate data-driven models that
have utility for model-based control methods. We then motivate
the use of the Koopman operator towards augmenting model-
based control. Specifically, we illustrate how the operator can
be used to obtain a linearizable data-driven model for an un-
known dynamical process that is useful for model-based control
synthesis. Simulated results show that with increasing complexity
in the choice of the basis functions, a closed-loop controller is
able to invert and stabilize a cart- and VTOL-pendulum systems.
Furthermore, the specification of the basis function are shown
to be of importance when generating a Koopman operator for
specific robotic systems. Experimental results with the Sphero
SPRK robot explore the utility of the Koopman operator in a
reduced state representation setting where increased complexity
in the basis function improve open- and closed-loop controller
performance in various terrains, including sand.

I. INTRODUCTION

Modeling for complex dynamical systems has typically been
the first step when designing, control, planning, or state-
estimation algorithms. System design and specifications have
been dependent on the use of high-fidelity models. However,
any derivation of a dynamical model from first principles
is typically a demanding task when the complexity of state
interactions is high. Moreover, analytical models do not cap-
ture external disturbances. As a result, derived models, for
use in model-based control settings, often have limited use
or poor prediction over longer time spans. Nevertheless, a
representation of the behavior of a dynamical system is central
to most model-based engineering and scientific application.

Within the field of systems and control theory, model uncer-
tainty has typically been mitigated with the use of robust and
adaptive control architectures. Typically, adaptive controllers
are self tuning and reactive to incoming state information
while robust controllers are designed to be invariant to model
uncertainty [1]-[4]. Motion planning for uncertain dynamical
systems have also been extensively investigated. Generally, in
this approach, uncertainty is explicitly modeled and incorpo-
rated into the decision making process [S]-[7]. However, like
robust and adaptive control approaches, the need for an explicit
uncertainty model often limits its utility in general settings.
Machine learning, offers a much more general approach [8]-
[10]. In particular, recent advances have utilized large sets
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of data to perform model-based control of various dynamical
systems [11]. Nonetheless, several questions about the training
data, stability, convergence properties, computational complex-
ity, and mechanical property conservation of the models are
still open questions that need to be addressed.

Recently, the use of data-driven techniques to mitigate the
effects of model uncertainty have sparked interest in the
Koopman operator [12]. The Koopman operator is a infinite-
dimensional linear operator that is able to exactly capture the
behavior of nonlinear dynamical systems. In application, the
Koopman operator is approximated with a finite-dimensional
linear operator [13]. This approximation can be computed in a
solely data-driven manner without any prior information of the
dynamical system. Complex fluid flow systems have accurately
been modeled using this approach [14]. Furthermore, it has
been shown that the spectral properties of the approximate
Koopman operator can be examined to investigate system-
level behavior like ergodicity and stability [12], [15], [16].
In addition, recent work has shown its utility in human-
machine systems [17]. In this paper, we investigate the utility
of Koopman operator theory for control in robotic systems.

The work is motivated by the desire to generate or augment
dynamical models of robotic systems through data collec-
tion. In particular, it is of interest to synthesize model-based
controllers using these data-driven models. Thus, the main
contribution of this paper is the application of Koopman
operator theory to the control of robotic systems. The Koop-
man operator is shown to have a linearizable data-driven
model of the dynamical system that is amenable to model-
based control methods. Closed-loop and open-loop controllers
are then formulated using the proposed data-driven model.
Furthermore, we explore the consequences of the specific
choice of basis function as well as complexity order for
swing up control of a simulated cart- and vertical take-off and
landing (VTOL)-pendulum systems. Last, experiments using
the Koopman operator using a Sphero SPRK robot are shown.
We conclude the paper with recommendations for future work.

The organization of this paper is as follows. Section II gives
an overview of the Koopman operator theory and its applica-
tion to data-driven approximations of dynamical systems. In
addition, Sections IIT and IV explore the implementation of
Koopman operator theory in simulation and experimentation,
respectively. Conclusions are in Section V.



II. KoOOPMAN OPERATOR

An overview of Koopman operator theory is given in this
section. For the purposes of this paper, we focus more on
the practical implementation of the theory and omit much of
the theoretical presentation. However, the interested reader can
find a complete treatment of the Koopman operator in [13].

To begin, consider a discrete-time dynamical system evolv-
ing as

Ty = Fay), (D

where z;, € M is the, possibly unobserved, state of the system
and y; € C. Furthermore, define an observation function

yr = g(xr), )

where g € G : M — C and G is a function space. For the
purposes on this paper, we assume that G is the L? space. The
Koopman operator, K : G — G, is defined as

[Kgl(z) = g(F(x)). 3)

Note that the Koopman operator maps elements in G to
elements in G. Therefore, it does not, as done by F, map
system states to system states. Furthermore, note that (3) can
be written as

(Kgl(zr) = g(F(zx)) = g(Tr+1)- “)

Therefore, the Koopman operator propagates the output of the
system forward. Finally, the observable equation can be easily
extended to the case where multiple observations are available,
g: M — CK,

The Koopman operator defined in (3) is linear when G is
a vector space. This property holds even if the considered
discrete-time dynamical system is nonlinear. However, since
the Koopman operator maps G to elements in G it is infinite
dimensional. Therefore, a nonlinear dynamical system given
by (1) can be equivalently described by a linear infinite
dimensional operator. From a practical standpoint, there is
not much benefit from this infinite dimensional representation
even if the operator could be defined for a specific system of
interest. However, the Koopman operator can be approximated
with a linear finite dimensional operator using data-driven
approaches.

A. Approximating a Koopman Operator

In order to define an approximate Koopman operator the
observation function (2) is redefined as

Yk = g(xr) = ¥(zg), 4)
where U(z) is a user-defined vector-valued function
U(z) = [1(x), 2(x), ..., dn (2)]- (6)
Next, the relation described by (4) is now given as
U(zp1) = V(wg) K + 7r(2k). (7

where K € CV*¥ and r(zy) is a residual (approximation
error). Note that the matrix K advances ¥ forward one time

step. Next, it is assumed that the trajectory of the system has
been collected such that

X =[z1,...,2p] (®)

where P is the number of recorded data points.

The matrix K can be computed in a number of ways. In
this paper, we adopt the least-squares approach, described in
[18], where K is determined by minimizing

=
J= 3 Ir)P, ©
p=1
| b=l
= 5 3 W(apa) - W) K (10)
p=1
Solving the least-squares problem yields
K =G'A, (1)
where 7 denotes the Moore—Penrose pseudoinverse and
1 bl
G=5 > W) (), (12)
p=1
1 b=l
A= ()" (2py1). (13)
p=1

Note that the computational burden of this approach grows
as the dimension of W increases. The approach generally
yields a better approximation as the dimension of W increases.
Furthermore, the number of data points and their distribution
across the state space will have a large effect on the computed
K matrix.

The definitions of (8-13) can be generalized. The recorded
data points need not come from a single trajectory nor be
sequential [18]. Multiple trajectories and trajectories with
missing data points can be used. The only requirement is the
sum of residuals given in (9) be defined by consecutive states
(zk, zr4+1) spaced equally in time. Even this could be avoided
by choosing another optimization to solve for K.

B. Approximating Dynamical Systems

For predicting dynamical systems, the approximation to the
Koopman operator can be used to generate a data-driven model
of a system by defining ¥ as

U(zx) = [$T,1/}1($)7¢2(£C), o UN ()]

Note that the state of the system, x € R™, is now included in
U(x). Thus we can write the approximate dynamical equations
of the considered system as

(14)

Tpyr ~ KT (z)7, (15)

where K € R™ N s the first n columns of K. Note that
equation (15) simply propagates forward the quantities of
interest (e.g. system states). Furthermore, in this work, z;1
is described as a linear combination of the system state, xy,
and the functions v;(zy).



III. CONTROL SYNTHESIS: OPEN- AND CLOSED-LOOP
CONTROLLERS

In this section we formulate open- and closed-loop model-
based controllers using the Koopman operator. It is first
shown that for a differentiable choice of basis function W, the
Koopman operator has a linearization that can be computed for
model-based control methods. Given the linearizable Koopman
operator, a model-based optimal control problem is formulated
for open- and closed-loop controllers.

A. Koopman Operator Linearization

By choosing a ¥ that is differentiable, the Koopman opera-
tor approximation to the dynamical system can be linearized:

(16)
a7)

Th+1 =~ KTafxl“k
~ Axg)xg.

Control inputs are readily incorporated to the definition of
W as an augmented state,

\I](*T7 ’LL) = [xTv uT7 wl('ra u)a 1/12(*%.’ u)7 e 7’(/1]\](1', U)] (18)
This yields the approximate dynamical equations,
Te+1 ~ KT\P(Ik, uk)T (19)

and the linearization of the approximate dynamical equations,

8\11 ov
Fg o+ K g

~ A(mk, uk)xk + B(l‘k, uk)uk.

(20)
21

Tet1 = K

Note that linearizable equations of motion of a dynamical
system can be computed solely from data.

B. Optimal Control Problem
Control synthesis for trajectory optimization is generated
for mobile robot dynamics of the form

= f(@r, uk), (22)

Tk+1

where x € R" is the state and v € R™ is the control input. For
a discrete system, we can solve for a trajectory that minimizes
the objective defined as

=3

k=0

5 1
(g — a:k Pz — 2x) + §ugRuk, (23)

l\')\»—t

where P € R™ ™ and R € R™>*™ are positive definite weight
matrices on state and control and Zj, is the reference trajectory
at time k. Note that the accuracy of the system model (22) will
largely determine the effectiveness of the synthesized optimal
control.

Open-Loop: Open-loop trajectory optimization precom-
putes the set of trajectory and control actions that minimize
the objective function (23) subject to the modeled dynamical
constraints in (22). Projection-based optimization [19] is used
in discrete time to generate the set of trajectory and control
actions given an initial trajectory x; and control uy for k €
[0, N]. In the experiment, the projection-based optimization
algorithm first generates the control actions based on the
dynamical model and then at a fixed rate the command signals
are sent via Bluetooth communication to the robot. Odometry
data is collected only for post-processing and is not used to
update the command signals.

Closed-Loop: In the simulated and the experimental work, a
discrete-time version of Sequential Action Control (SAC) [20]
is used with the Koopman operator to generate closed-loop
optimal control calculations. However, any MPC technique
can be used with the Koopman operator. Here, SAC operates
by first forward simulating an open-loop trajectory for some
horizon N for a control-affine dynamical system given by

1 = f(zr,ur) = g(zr) + h(zk)ug. (24)

The sensitivity to a control injection for any given discrete
time of the objective function is given as

S = (k) — (W) (25)
where

J1(k) f(@g, uo k), (26)

fa(k) = flar,up) 27

are the dynamics subject to the default control ug ;, and derived
control uj. The co-state variable p;, € R™ is computed by
backwards simulating the following discrete equation
oy,  Ofc”
Pk—1 = D + o Pk
where lk = %({L‘k — i‘k) P({,Ck - i’k) + %UZ:R’LL]C and fk =
f(zg,uo k) for some default ug s subject to py = 0. The
optimal control uj, is computed by first defining a secondary
objective function as

N
1,dJ
SRk

The objective (29) is now convex in u; and has a minimizer
when

(28)

1
aq)® + o i — uoklli (29

uj, = (A+ R") " h(ae)” praa + uok, (30)

where A = h(xy)” prp} h(xi). Given the sequence of actions
uj, it is then possible to calculate the time of control appli-
cation t} as

€1y

t; = argmin —

A\’

The control duration in discrete time is found using an outward
line search [21] for a sufficient descent on the cost.



Fig. 1. Sphero SPRK Robot is shown with its clear spherical casing revealing
the underlying mechanism. The internal mechanism shifts the center of mass
by rolling and rotating within the spherical enclosure, causing the SPRK to
roll. RGB LEDs on the top of the SPRK are utilized to track the odometry
of the robot through an Xbox Kinect with OpenCV and OpenKinect libraries
for image processing and motion capture. ROS [22] is used to transmit and
collect data at 20Hz.

IV. EXPERIMENTS USING SPHERO SPRK

In this section, we describe the experimental set-up for
use of the Sphero SPRK robot with model-based control
algorithms that utilize a state-space model generated via the
Koopman operator. In particular, we define data-driven closed-
and open-loop model predictive controllers as well as motivate
and explore the utility of Koopman operator for control of a
robotic system.

In the experiments with the SPRK, trajectory optimization
is run both in open-loop form and closed-loop feedback form.
Here, the tracked states of the robot are position z,y and
velocity @,y and inputs to the robot are desired velocities
u1,us. The objective function parameters are defined as
P = diag([60,60,0.1,0.1]) and R = diag([20,20]) and are
maintained constant through both open-loop and closed-loop
experiments. An additional set of experiments are done to
show the use of the Koopman operator for control in a sand
environment.

A. SPRK

The SPRK is a differential drive mobile robot enclosed in a
spherical case. The dynamics of the SPRK are driven by the
nonlinear coupling between the internal mechanism and the
outer spherical encasing. In addition, proprietary underlying
controllers govern how the command velocities are interpreted
to low-level motors. The proprietary embedded software uses
the on-board gyro-accelerometers to balance the robot up-
right while rolling. The caster wheels on top of the internal
mechanism ensures constant contact of the lower wheels that
are driven via two motors. The embedded software interfaces
with heading and velocity (or x —y velocity) command inputs
sent via Bluetooth communication. A high fidelity model of
the robot would include several internal states characterize
the internal mechanism and controller. However, rather than

seeking to approximated a high dimensional model, a reduced
state model was sought.

Figure 1 shows a closer look at the SPRK robot. Odometry
is collected using a Xbox Kinect with OpenCV [23] image
processing. More details about odometry and motion capture
are stated in the caption of Fig. 1.

B. SPRK Koopman Operator

The representation of the system consists of the position
of the robot (z,y), its velocity (&,y), and the commanded
velocity (ugz,u,). Odometry data from the Kinect paired
with recorded velocity commands are used to generate the
approximate Koopman operator. The vector-valued functions
used in this experiment are polynomial basis functions given
as

s ] (32)

(33)

\I’(x) = [1’, Yy T, Y, Ug, Uy, L, 1o, ...

Pi(x) = &%y
where «;, and 3; are nonnegative integers, index i tabulates
all the combinations such that a; + 5; < @ and @ > 1 defines
the largest allowed polynomial degree. We ignore higher order
position dependence in the operator in order to prevent any
possible overfitting of position-based external disturbances.
The approximated Koopman operator was computed using
data captured when the robot was operating at velocity under
1 m/s for the open-loop trails.

V. RESULTS
A. Simulation: Mechanical Energy

In this section, the equations of motion of a double pendu-
lum are approximated with the method described in Section II.
The mass of both pendulums are 1 kilogram and the lengths
of both are 1 meter. The mass of the pendulums are assumed
to be concentrated at their ends. The system is conservative
and subject to a gravitational field (9.81 m/s?).

The state of the system, z, is described by the relative
angles of the pendulums with respect to the vertical (6, and
f>) and their time derivatives (91 and 92). Data was collected
by simulating the system multiple times with random initial
conditions given by

To = [U(—l, 1)191,1/{(—1, l)laz,Z/{(—l, 1)10'1 ,Z/{(—l, 1)19‘2}

where U(—1,1) is an uniformly distributed random variable
with range —1 to 1. Furthermore, lp, = lp, = % and
lél = léz = 0.5. Therefore, the initial condition is uniformly
distributed around the origin (and the stable equilibrium) and
its range is defined by L = [lg,,ls,,l; ;15 ]. Any data point
that fall outside of the range defined by L was not used to
approximate the Koopman operator. Data collection occurred
at 100 Hz and was stopped when 2,000 data points were
collected.

The vector-valued functions used in this numerical experi-
ment are polynomial basis functions give as

\I](‘T) = [81’ 92’ 91792’ 17 wla ¢27 .. awM]
Pi(x) = (01/19,)" (62/16,) (01 /15, ) (B2/15,)"

(34)
(35)
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Fig. 2. Simulated trajectories when the approximate Koopman operator was used to propagated the system’s configuration. As the complexity ¥ increases,
so does the accuracy in prediction. 100 trials with uniformly random initial conditions were conducted to invesgate the relationship between accuracy and
total mechanical energy. The prediction error tended to increase with total mechanical energy.

where «y, 5;,7i, and J; are nonnegative integers, index i
tabulates all the combinations such that «; + 3; +v; +0; < @
and ) > 1 defines the largest allowed polynomial degree. Note
that —1 < ¢/; < 1 when the state of the system is within the
defined range. The polynomial basis functions were scaled by
the maximum expected value of the state to prevent numerical
instability when higher order polynomials were utilized.

Figure 2 shows a simulated trajectory and the corresponding
predicted trajectories when approximated Koopman operators
were used to propagate the system’s configuration. As ex-
pected, the accuracy of the predicted trajectories are improved
when Q is increased. Figure 2 also shows how the accuracy
of the predicted trajectories are dependent on the initial
conditions. The prediction error of a trajectory is computed
as

1
N Z(ffsim#i - iCK,i)2 (36)
K3

where zgn, is the simulated trajectory, xx is the system’s
trajectory predicted by the approximated Koopman operator,
and N is the total run-time of the simulation. The prediction
error tended to increase with total mechanical energy. Recall
that the dynamics of a double pendulum are described by
transcendental functions. Therefore, any approximation by
polynomials of these dynamics will deteriorate as the relative
angle increases in magnitude. However, when the relative an-
gles are small (total mechanical energy is small) a polynomial
approximation is accurate. As expected, selection of W plays
a critical role in determining the quality of the computed
Koopman operator.

B. Simulation: Inversion and Stabilization of Pendulum Sys-
tems

In this section, we describe the results of utilizing the
Koopman operator for inverting a cart-pendulum system and a
VTOL-pendulum system. In particular, this section overviews
the effect that the choice of basis functions has on systems
that have components in SO(n) for n > 1.

For the cart-pendulum system, the Koopman states are given
as

U(x)=[0,2,0,&,u,1,1¥1,19,...

U] 37

where we use

Pi(z) = 0% 2P 070y (38)

as the polynomial basis function set and compare with a
Fourier basis function,

Yi(x) = H H cos([z]ik;) sin([z];K;)u, 39)
[x]i Ky
where [z]; is the i'” state of the system and ; is the j' basis
order such that > i < Q.
In this simulation, a nominal model given by
O
Ty,
Tpy1 = Tk + u ot (40)

u

is utilized as an initial guess for the controller in order to
boot-strap the data-driven process. Figure 3 presents the use
of increasing complexity orders of a polynomial and Fourier
basis function for the cart-pendulum system. Both test cases
begin with the same initial condition and the same nominal
model. At intervals of 20s, a Koopman operator is computed
with either the polynomial or Fourier basis functions using
the initial 20s of data collected. Due to the existence of the
pendulum on SO(1), the Fourier basis function immediately
generates a Koopman operator model that allows the controller
to balance and stabilize the pendulum. Moreover, the use of the
Fourier basis illustrates the concept that increasing complexity
on the operator basis set is not always guaranteed to return an
improved data-driven model. In particular, when @ = 2, the
Koopman operator matches the system model identically. As
a result, any further additions in complexity using the Fourier
basis for this system is not beneficial (this is not always the
case if the system has higher order dependencies). In contrast,
the polynomial basis function does show improvement as
complexity is increased. Although it would require an infinite
set of polynomials to approximate a cosine or sine function,
the controller using this operator model provides the desired
energy pumping cart motion that is commonly witnessed in
inverting a pendulum.

Simulated examples are further investigated with the use
of a vertical take-off and landing (VTOL) pendulum system
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[24]. For this example, the problem of inverting the pendulum
attached to a VTOL is slightly modified. Specifically, it is
assumed that a well known model of the VTOL exists, but
the interaction between the VTOL and the pendulum remains
unknown. Thus, the goal of this simulated example is to
generate a Koopman operator that describes the interaction
of the VTOL on the pendulum.

In this example, the Koopman operator is redefined as an
augmentation to a dynamical system

Tpgr = flap up) + K70 (2, up) T (41)

By subtracting the current nominal model of the system
f(xg,ux) from both side in equation (41) and treating xj41
as the measurement of state, we can define the following as
a nonlinear process that can be used to generate a Koopman
operator:

\I/(Jik_H) = Tk+1 — f(l‘k, uk) = RT\IJ(xk, uk)T.

Given the previous cart-pendulum result, we see that the
interaction between the VTOL and the pendulum can be
captured solely via a vast set of basis functions across the state
of the VTOL-pendulum system. In Fig. 4, the VTOL is shown
attempting to invert and balance the pendulum attached with
the use of the Koopman operator. Each sequential Koopman
operator with increasing complexity is generated from the
first 20 seconds worth of data. Originating from the nominal
model, it can be seen that the swinging behavior captures a
portion of the energy pumping maneuvers required to invert
the pendulum. As the Koopman basis order increases, so does
the refinement in control authority. When () = 2 for the
polynomial basis, it can be seen that swing up attempts are
more successful. Once the Koopman operator generated from
the Fourier basis functions is used, the controller generates

(42)

the appropriate control strategy to swing up and invert the
pendulum.

In the following section, our discussion on the use of the
Koopman operator is extended to control of a Sphero SPRK
robot in a reduced state setting.

C. SPRK Experiments

1) Open-Loop Trajectory Optimization: Figure 5 shows
trajectories generated using the open-loop controller with
varying (). The reference trajectory is given as

z r cos(vt)

Yy rsin(2vt)

z —rvsin(vt) “3)
0l 2rv cos(2vt)

where » = 0.5 and v = 1.3. The reference trajectory was
made sufficiently aggressive to excite the system’s internal
nonlinearities.

As expected, the system improves in performance when
tracking the reference trajectory with increasing (). In par-
ticular, as () goes from 1 to 2, less drift in the resulting open-
loop trajectory is visually noted at the end of the path. As @ is
further increased, more complexity is added to the description
of the SPRK via the Koopman operator which in turn reduces
drift and improves the tracking performance. Furthermore, the
standard deviation of tracking error across trials is shown to
reduce as () is increased. This implies both consistency in the
behavior of the robot subject to the controller. Therefore, it
can be concluded that the approximated Koopman operator
is better able to represent the dynamics of the system by
increasing the complexity of W.
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A) Open-Loop Trials
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Here we show reference tracking using open-loop trajectory optimization. The reference trajectory was made sufficiently aggressive to excite the

system’s internal nonlinearities that cannot be captured completely by the minimal state representation. Respective integrated tracking errors are shown to
decrease with an increase in (). This suggests that the approximate Koopman operator better represents the dynamics of the system with increasing complexity

of U.

2) Closed-Loop Trajectory Tracking: Figure 6 shows the
experimental results for trajectory tracking on a tarp and sand
terrain using closed-loop model-based controllers with the
Koopman operator. The optimal control signal was updated at
20 Hz and the reference trajectory was given by equation (43)
where 7 is split into two components, r, = 0.7 and r, = 0.4,
with v = 0.9. The nominal linear model is given by

Tp1 = Azy + Buy, (44)

where A and B are defined as a fully controllable double
integrator system.

The effectiveness of the closed-loop controller is bench-
marked by comparing the model generated from the Koopman
operator to that of a simulated example of the controller
knowing the true system model (Fig. 6). Using only the first
20 seconds worth of data from the nominal model controller,
we can see in Fig. 6 A) that as the operator increases in com-
plexity, so shows the performance of the controller relative to
the benchmark test. Specifically, Fig. 6 B) shows the tracking
error for experimental trials with increasing complexity of
the Koopman operator. Notably, when ) = 3 in sand, the
Koopman operator did not have a sparse enough data set that

spans the higher order terms in the operator. This can be fixed
by collecting more data that spans the robot’s operating region.

Here, the nonlinear dynamics driven by the internal mech-
anism become more apparent as the order of the operator is
increased. In particular, equation (6) provides some insight
into the output of the data-driven model of the Koopman
operator for the update equation of the SPRK’s velocity subject
to control inputs. Because the effect of the internal mecha-
nism’s configuration (typically described on SO(3)) cannot
be linearly approximated, the Koopman operator begins to
approximate a Taylor expansion (6). Therefore, the Koopman
operator captures the inherent nonlinearities that are utilized
by the model-based controller with respect to the terrain.
However, achieving a representation that performs consistently
across all operating terrains seems infeasible with such limited
information, without extra structure on the Koopman operator,
such as global Lie group structure or mechanical properties
(e.g. symmetries).

VI. CONCLUSION

We present Koopman operator theory and focus on the
practical implementation of the theory for model-based con-
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Fig. 6. Here, we show closed-loop model-based control using sequentially increasing basis complexity, () in the Koopman operator. Two examples using

the SPRK robot are run on a tarp and on sand. A baseline simulated example is provided to show the best-case performance of the controller subject to the
nominal model used. As the complexity of the operator’s basis function is increased, so does the performance of the tracking. Note that in B), the 3rd order
operator used in sand (shown as the dashed red line) did not have a sparse enough set of data to provide a stable model, although it performed better than
the nominal model. Link to multimedia provided: https://vimeo.com/219458009 .
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trol. We derive a linearizable data-driven model using the
Koopman operator. Closed-loop and open-loop controllers
were formulated using the proposed data-driven model. The
open-loop experiments reveal the Koopman operator improves
performance as the complexity of the basis increases. Closed-
loop experiments reveal the Koopman operator is able to
capture the nonlinear dynamics of simulated examples with
the cart- and VTOL-pendulum and the SPRK robot.

Future research directions include an in-depth analysis of
the choice of basis for dynamical system with distinct structure
(e.g. conservative systems, mechanical systems, etc.). The
relationship between available states and the accuracy of the
approximate Koopman operator needs rigorous stability anal-
ysis. Moreover, numerical stability analysis and algorithmic
optimization is another possible research avenue.
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