
Toward Specification-Guided Active Mars Exploration for
Cooperative Robot Teams

Petter Nilsson∗, Sofie Haesaert∗, Rohan Thakker†, Kyohei Otsu†, Cristian-Ioan Vasile‡,
Ali-akbar Agha-mohammadi†, Richard M. Murray∗, and Aaron D. Ames∗

∗California Institute of Technology, Pasadena, CA 91125
†NASA Jet Propulsion Laboratory, Pasadena, CA 91109

‡Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract—As a step towards achieving autonomy in space
exploration missions, we consider a cooperative robotics system
consisting of a copter and a rover. The goal of the copter is to
explore an unknown environment so as to maximize knowledge
about a science mission expressed in linear temporal logic that is
to be executed by the rover. We model environmental uncertainty
as a belief space Markov decision process and formulate the
problem as a two-step stochastic dynamic program that we solve
in a way that leverages the decomposed nature of the overall
system. We demonstrate in simulations that the robot team makes
intelligent decisions in the face of uncertainty.

I. INTRODUCTION

Environment exploration and task planning are crucial com-
ponents of any autonomous system. In most approaches, these
two aspects are decoupled in the sense that exploration is
performed to maximize knowledge overall, rather than to max-
imize knowledge pertaining to the task. In this work, we aim to
improve efficiency in situations where exploration is expensive
by limiting exploration to areas crucial for accomplishing a
given task.

Due to the growing complexity and uncertainty in future
space missions, autonomy is a crucial ability required for
mission success. We focus on multi-asset missions (teams of
robots), in particular the 2020 Mars mission that will consist
of a ground rover and a copter for exploration (Fig. 1). To
increase productivity and science return, the robotic team
needs to autonomously perform multi-sol (sol: Martian day)
navigation without human intervention. Severe communication
delays and resource constraints (such as battery time and
limited hours of sunlight) pose further challenges in achieving
such autonomy. In these missions, partial knowledge about the
environment is typically available from satellite imagery, but
it needs to be complemented with observations from on-board
sensors. Our goal is to improve both autonomy and efficiency
by developing principled methods that determine the most
important areas to explore in a specification-guided manner.
We focus specifically on the problem of determining how the
copter should behave to assist the rover in the autonomous
execution of mission tasks.

Our approach lies at the intersection of formal synthesis
methods and stochastic optimal control; we phrase the design
problem as a two-stage optimal control problem in the com-
bined space of rover-copter poses and environment beliefs. To
partially circumvent the curse of dimensionality we leverage

Fig. 1. Cooperative robotics team for Mars exploration.

the decomposed nature of the problem and perform value
iteration via sequential back-stepping, which avoids explicit
construction of the large aggregate system.

Related Work. Environment mapping for robot navigational
purposes is an important prerequisite for robotic autonomy for
which many types of methods have been proposed [27, 29, 30].
While mapping algorithms can be developed separately from
planning algorithms, in this work, we are interested in joint
planning and mapping methods. Active perception techniques
fall into this category [4, 7, 26]. Active mapping or SLAM al-
gorithms, a subcategory of active perception, aims to enhance
the quality of the environment map (e.g., for the navigation
task [3, 10, 12, 24]) by choosing information-rich trajectories.
However, these methods are typically limited to subsystem
autonomy (e.g., navigation) and do not have a principled
way of incorporating system-level constraints and high-level
mission specifications and requirements.

Motion planning and control of robots tasked with missions
expressed as linear temporal logic has been addressed in both
deterministic [16, 18, 22, 31] and stochastic [20, 23, 28]
settings. Active estimation has been investigated in [15, 21],
and quadcopter-aided exploration and pose estimation was
proposed in [9]. However, specification-guided cooperative
control with agents that have heterogeneous roles has to the
best of our knowledge not been explored in previous work.

Contributions. In this work, we aim to develop a novel
methodology that allows for principled incorporation of mis-
sion specifications where the exploration not only helps navi-
gation, but also assists with satisfaction of mission goals.

The contributions are threefold. Firstly, in Section II we
construct a novel problem formulation for future multi-asset
Mars missions by modeling all system components as Markov

decision processes, and by expressing science objectives using
temporal logics. Secondly, in Section III we show that the
exploration task can be reformulated as a stochastic optimal
control problem that is specific to the rover task. In Section
IV, we introduce—as the third contribution—computational
methods that leverage the inherent decomposed structure of the
problem to mitigate the curse of dimensionality. Additionally
in Section V, we illustrate these new concepts on a case study
that exhibits typical aspects of a Mars exploration problem,
before concluding the paper in Section VI.

II. PROBLEM SETUP

A. Markov Decision Process Models

We model the rover and copter as well as environment
uncertainty as Markov decision processes [6].

Definition 1. A discrete-time Markov decision process (MDP)
is a tuple M = (X, x0,U, T) where X is a state space with
states x ∈ X; x0 ∈ X is the initial state; U is an input space
with inputs u ∈ U; and T is a conditional stochastic kernel
that assigns to each state x ∈ X and control input u ∈ U a
probability distribution T (· | x, u) over X.

For a given sequence of control inputs ut ∈ U, we say that
an execution of M is a sequence of states x = x0x1x2x3 . . .
such that xt+1 ∼ T (· | xt, ut) for t ≥ 0. A policy µ =
µ0µ1 . . . is a sequence of mappings µt :

∏
tX→ U from the

history space to the action space. An execution is controlled by
µ if xt+1 ∼ T (· |xt, µt(x0, . . . , xt)). A policy is Markov if for
all t, µt(x0, . . . , xt) = µt(xt). All systems in this paper are
modeled as MDPs, or as combinations (products) of MDPs.
Rover and Copter as MDPs. In case of the rover, the state
space X represents the two-dimensional1 space in which the
rover navigates. Its state transitions can be modeled as being
either stochastic or deterministic. Similarly, the dynamics of
the copter can be represented in three-dimensional space,
where the additional dimension represents altitude. Effects of
wind and other uncertainty influencing the state transitions can
be captured by the stochastic transitions in the copter MDP
model. For brevity, we refer to the rover MDP as Mrov with
state variable xr and to the MDP model of the copter as Mcop

with state xc.
Environment Uncertainty as a Belief MDP. A common way
to represent a map for planning purposes is to attach labels
such as “sand” or “rock” to different regions, but in a Mars
setting the true labels are often only partially known at the
time of system deployment.
We capture this environmental uncertainty with MDPs Mei

that model belief dynamics over labeled regions i of the two-
dimensional rover state space. Thus, the state xei of Mei takes
values between 0 and 1 and corresponds to the estimated
probability that region i has a certain label. The aggregate
environment model Menv with state xe is the combination
of individual MDPs Mei . Transitions in these MDPs occur

1The rover moves slowly and can turn on the spot, so yaw dynamics can
be ignored.

when measurements are taken from on-board sensors, i.e., the
stochastic kernels are parameterized by the physical distance
of the robots to the regions in a measurement model. For
instance, as illustrated in Fig. 2 it is reasonable to assume that
the rover can take measurements of a given region provided
that it is sufficiently close, and that the copter can take
measurements of regions it flies above. Copter measurements
also depend on the altitude: a high-flying copter can see a
larger area but the image resolution is better if the copter is
close to the ground. Hence the measurement models dictate
the structured composition of the copter and rover models
with the environment model. The resulting composed MDP
represents the full model of the state of both robots and the
current knowledge of the environment.

C

B

A
sand prob

= 0.6

sand prob
= 1

Fig. 2. Taking measurements at higher altitudes (A) allows the helicopter
to cover larger area, however, due to low resolution of the image the inferred
labels have a larger uncertainty. Whereas, taking measurements at lower
altitudes (B) results in lower uncertainty of the measurements but a smaller
coverage area. Finally, the rover (C) can get measurements with very low
uncertainty as it gets closer to the terrain. Further, it can also get the true label
using its proprioceptive and exteroceptive sensors. For example, sand slippage
can be detected by measuring discrepancies between location estimates from
wheel odometery and from visual odometry.

B. Formal Specifications

We use temporal logic formulas to formally describe tasks
that the rover should perform. The basic building blocks of
a temporal logic formula are atomic propositions that take
values true or false. An atomic proposition p is associated
with a subset A of a state space X in the sense that p = true
if and only if x ∈ A.

By combining atomic propositions into a formula, desired
system behavior is expressed as set membership constraints
(atomic propositions) together with temporal relations (oper-
ators). Consider a set AP = {p1, . . . , pL} of atomic proposi-
tions; it defines an alphabet 2AP where each letter π ∈ 2AP of
the alphabet is a set of atomic propositions. An infinite string
of letters is a word π = π0π1π2 . . ., which should be thought
of as the observed output of a system. More specifically,
for an execution x = x0x1x2 . . . of an MDP, a labeling
function L : X → 2AP that maps states to outputs yields
the associated word as π = L(x0)L(x1)L(x2) Desired
behavioral properties can now be expressed via temporal logic
formulas over the generated words. In the sequel, we focus on
a fragment of linear temporal logic.

Definition 2. Formulas in the syntactically co-safe LTL
(scLTL) fragment are constructed according to the grammar

ϕ ::= true | p | ¬p |ϕ1 ∨ ϕ2 |ϕ1 ∧ ϕ2 |ϕ1Uϕ2 | © ϕ, (1)

where p ∈ AP is an atomic proposition.

The syntax (1) defines the symbols and their correct order-
ing in a formula. In contrast, the semantics defined next give
the interpretation of a formula.

Definition 3. We write (π, t) |= ϕ to indicate that a word
π satisfies ϕ at time t. Satisfaction is defined recursively as
follows: (π, t) |= true; (π, t) |= p iff p ∈ πt; (π, t) |= ϕ1 ∧
ϕ2 iff ((π, t) |= ϕ1) ∧ ((π, t) |= ϕ2); (π, t) |= ϕ1 ∨ ϕ2 iff
((π, t) |= ϕ1) ∨ ((π, t) |= ϕ2); (π, t) |= ϕ1Uϕ2 iff ∃s ≥
t s.t. ((π, s) |= ϕ2) and (π, l) |= ϕ1,∀l ∈ {t, . . . s − 1};
(π, t) |=©ϕ iff (π, t+ 1) |= ϕ.

We say that a state trajectory x = x0x1x2 . . . satisfies a
specification ϕ, written x |= ϕ, if the generated word π =
L(x0)L(x1)L(x2) . . . satisfies ϕ at time 0, i.e. (π, 0) |= ϕ.
We use the shorthand notation ♦a—eventually a—to express
the property that a set labeled with a should eventually be
reached, i.e. ♦a = true U a.

Since transitions are stochastic we can in general not say
that an MDP M satisfies a property ϕ. We can however for a
given policy µ quantify the probability that the system satisfies
the property, i.e. compute or approximate

PM
µ [x � ϕ]. (2)

For our purposes, the interesting scenarios are when there is
a lot of uncertainty about whether a mission can be completed
or not. If the mission is trivial, or it is already known to be
difficult, exploration will likely only further establish these be-
liefs. In cases where mission completion is uncertain, we want
to leverage the copter to reduce mission risk: the probability
that a mission we choose to undertake ultimately fails. Having
introduced MDP models for rover, copter, and environment
belief, as well as scLTL specifications, the problem we address
in this paper can be stated as follows.

Problem 1. Consider a robot-copter team in an uncertain
environment, all modeled as MDPs. Design a strategy for the
robot-copter team that reduces the probability of failure of a
scientific mission given as an scLTL formula.

We have chosen to work with the scLTL fragment that is
restricted to properties that can be satisfied in finite time. For
the purpose of Mars exploration where tasks are often defined
on a daily basis (and thus are of finite duration) this fragment is
capable of representing a large class of relevant specifications.

C. Problem Decomposition

Due to the nature of the mission—the copter is quick
and has short battery life (minutes), the rover moves slowly
(over hours)—it is reasonable to divide the problem into two
subproblems. We propose to solve the problem sequentially
based on its natural division into two phases: exploration

0 Tc Tc + Tr
t

& Environment & Environment
Copter Rover

Exploration Mission

Fig. 3. Illustration of execution order. In the exploration phase [0, Tc] the
copter explores the environment, whereas the rover executes the scientific
mission on [Tc, Tc + Tr].

and mission execution. As shown in Fig. 3, the copter is
active in the exploration phase, whereas the rover conducts
the critical scientific mission in the second phase. We assume
that the exploration phase lasts for a time Tc, and that the
mission phase lasts at most for a time Tr. These times can
be determined based on the available battery capacity and
remaining hours of daylight. In both phases the environment
belief is updated according to measurements taken by the
active agent. While the execution order of the phases is
exploration followed by mission execution, the reverse holds
for design: first the mission design problem is solved and its
solution informs the exploration design.

Mission Problem. The objective in the mission phase is to
maximize the probability that the specification ϕ is satisfied,
thus part of the Mission Problem is to synthesize such a policy.
However, to guide the design of an exploration policy it is also
necessary to quantify the probability of success for different
environment belief states at time Tc. To this end, the objective
of the Mission Problem is as follows: for a given initial rover
state xrTc

and for all environment belief states xeTc
compute

the probability that the mission specification is satisfied, along
with a maximizing policy.

Exploration Problem. Our objective is to extract control
policies that maximize the knowledge about the satisfiability
of a given task: either we want the exploration to show
that the task can be completed with a high probability, or
that the probability of task completion is very low. Both are
desirable outcomes since a negative result allows resources to
be redirected toward more realistic objectives. Based on the
partition into exploration and mission phases we refine our
problem as follows.

Problem 2. Consider the model components listed above. De-
sign a policy for the copter exploration phase that explores the
environment in a way that maximizes the expected knowledge
about satisfaction of the scientific mission at time Tc.

Computational Challenge. Due to the multiple interacting
model components, a solution to Problem 2 is potentially com-
putationally challenging. The decomposition into an explo-
ration phase and a mission phase already improves scalability
significantly by limiting the number of systems that are active
at any given time (c.f. Fig. 3). We additionally show in Section
IV how the problem can be solved sequentially over system
components, which avoids the expensive step of explicit com-
putation of transition probabilities in the aggregate systems.
Combined, these two properties allow us to synthesize policies
for realistic problems of modest size.

III. A STOCHASTIC OPTIMAL CONTROL APPROACH

We now detail how both the Mission Problem and the
Exploration Problem can be phrased as optimal reachability
problems.

A. Optimal Control Solution of Mission Problem

We first show that specification satisfaction can be formu-
lated as a stochastic reachability problem over an extended
MDP, and then detail how the solution can be obtained via
stochastic finite-horizon dynamic programming. We start with
an example illustrating how extended systems can be used to
reason about specification satisfaction.

Example 1. Consider the example in Fig. 4 consisting of an
example MDP and a mission specification ϕ := ♦a ∧ ♦b
dictating that two tasks a and b should both eventually be
satisfied, for L(xa) = {a}, L(xb) = {b}, and L(xc) = ∅. The
automaton system to the right in Fig. 4 has the property that
a trace π = L(x0)L(x1)L(x2) . . . satisfies the specification
if and only if the sequence of inputs π causes the system to
reach the target state qf . It follows that a trajectory of the
MDP to the left satisfies ϕ if and only if the corresponding
joint execution of the MDP and the automaton reaches the
final state qf .

xc

xa

{a}

xb

{b}

0.8
0.2

0.70.3

0.6

0.4, 1

1, 1

⊗ q0

q1

q2

qf

a

b¬a ∧ ¬b

¬b

¬a
a

b

Fig. 4. On the left an example MDP, and on the right a finite-state automaton
corresponding to the mission specification ♦a ∧ ♦b.

The procedure in Example 1 is general: for any specification
ϕ in the scLTL fragment it is possible to construct a finite-state
automaton Aϕ with accepting set Qf [5]. The probability (2)
that a specification is satisfied for an MDP M with state space
X is thus equivalent to the probability that a set X × Qf in
the state space of the extended product system M⊗Lser Aψ is
reached, where the product ⊗Lser is defined as follows:

Definition 4. Consider two MDPs M1 and M2. For a
given connection C : X1 → U2, their serial product is
the MDP M1 ⊗Cser M2 = (X1 × X2, xser,U1, Tser), where
xser = (x1,0, x2,0) and Tser(x

′
1, x
′
2 | x1, x2, u1) = T1(x′1 |

x1, u1)T2(x′2 | x2, C(x′1)).
Additionally, we say that their parallel product is the

MDP M1 ⊗par M2 = (X1 × X2, xpar,U1 × U2, Tpar), where
xpar = (x1,0, x2,0) and Tpar(x

′
1, x
′
2 | x1, x2, u1, u2) =

T1(x′1 | x1, u1)T2(x′2 | x2, u2).

Let us now return to the Mission Problem, where the
MDP model contains both the rover MDP Mrov and the
environment MDP Menv . Since Menv is itself composed of
several belief MDPs over individual labels, i.e., Menv =

(Me1 ⊗par . . .⊗par Men), it follows that the mission MDP
is given as

Mmiss =
(
Mrov ⊗C1

ser (Me1 ⊗par . . .⊗par Men)
)
, (3)

where C1 : Xrov → Ue1 × . . .×Uen is a measurement model
that maps rover poses to measurements in the environment
model. Moreover, when combined with the temporal speci-
fication ϕ we get an extended MDP composed of different
parts: the rover, the environment belief model, and also the
specification automaton Aϕ:

M1 =
(
Mrov ⊗C1

ser (Me1 ⊗par . . .⊗par Men)
)
⊗Lser Aϕ. (4)

Here L : Xrov ⊗ Xenv → Uϕ maps the joint space of rover
poses and environment belief states to 2AP , where AP is the
set of atomic propositions used to construct ϕ. To design a
policy for the mission phase, it is now sufficient to maximize
the probability that the extended MDP (4) reaches the target
set Xrov ⊗ Xenv ⊗Qf .

Recall that the rover performs the mission task from time
instant Tc (the end time of the copter exploration) until time
Tr +Tc. Thus, for a given policy µ the probability of mission
specification satisfaction (2) can be expressed as

PMmiss
µ

[
x[Tc,Tc+Tr] |= ϕ

]
, (5)

where x[Tc,Tc+Tr] is the state trajectory over the interval
[Tc, Tc + Tr] of Mmiss. By incorporating the specification as
part of the model, we can write an equivalent design problem

arg max
µ1

PM1
µ1

[
x1

[Tc,Tc+Tr] |= ♦Xf

]
(6)

with x1
[Tc,Tc+Tr] being the state trajectory of the extended

MDP M1 and with the target set Xf = Xrov ⊗ Xenv ⊗Qf .
To solve the optimal reachability problem (6) we define a

value function Vr that quantifies the probability that the rover
satisfies its specification before time Tr + Tc as a function of
the system state xt := (xrt , x

e
t , x

ϕ
t) of M1 at time t ≥ Tc:

V tr (xrt , x
e
t , x

ϕ
t)=max

µ1

PM1
µ1

[
x1

[t,Tc+Tr]|=♦Xf |x1
[t]=xt

]
. (7)

From [1], we know that starting from V Tc+Tr (x) ≡ 1Xf
(x),

this probability along with the optimal Markov policy can be
inductively computed via value iteration as

V t(x) = max
u∈Urov

max
(
1Xf

(x),E
[
V t+1(x′) | x, u

])
, (8)

µt1(x) ∈ arg max
u∈Urov

max
(
1Xf

(x),E
[
V t+1(x′) | x, u

])
,

for x′ ∼ T (· |x, u), and with 1Xf
the indicator function of

the set Xf .
Furthermore, for every Markov policy µ1 for the extended

MDP M1 there exists a policy µ for the rover-environment
MDP Mmiss. But the nested products, e.g. in (4), lead to large
aggregate state spaces, and since the size of a matrix represen-
tation of the transition kernel is in the worst case quadratic in
the size of the state space, computation in the aggregate system
quickly becomes challenging. In the next section we show
that value iteration can be done recursively over subsystems
without computing aggregate transition matrices, but first we
discuss the exploration problem.

B. Optimal Control Solution of Exploration Problem

Similarly to above, we can model the overall stochastic
system that is active in the exploration phase as

M2 = Mcop ⊗C3
ser (Me1 ⊗par . . .⊗par Men) , (9)

with C3 : Xcop → Ue1×. . .×Uen being a measurement model
that maps copter poses to measurements of the environment
labels. The exploration phase affects the environment belief
xeTc

at time Tc. We assume knowledge of the initial rover
state xrTc

(the initial state xϕTc
of the specification automaton

is always known), and quantify the effect of the exploration
as mission risk R : Xenv → [0, 1] defined as

R(xeTc
) = V Tc

r (xrTc
, xeTc

, xϕTc
), (10)

i.e., as a function of the environment belief state xeTc
at the

end of the exploration phase. Given R(xeTc
), the question now

becomes how the environment should be explored in order to
maximize the probability of a favorable R(xeTc

).
What would a good result look like? As a first consideration,

one could choose the exploration objective

max
µ2

EM2
µ2

(R(xeTc
)), (11)

which simply attempts to maximize the probability that the
rover can satisfy the mission specification. We give a small
example distilled from the larger Mars mission that highlights
issues with this objective.

Example 2. Consider an environment with a single belief state
xe ∈ [0, 1] that expresses the belief that region A contains a
sample of interest. We specify the science mission as “get a
sample of A”, i.e., ♦sA, which is satisfied when A is reached
and A contains a sample (xe = 1). Without loss of generality,
assume that the rover can reach A with probability 1 for some
policy µR. Then µR is an optimal policy for the rover and the
satisfaction probability is equal to the initial belief state xe0.

Even if the copter can explore region A and thus determine
exactly whether the mission can succeed or not, there is no
benefit in doing so under the objective (11). Exploring A has
an expected utility of E

[
xeTc

]
= 1× xe0 + 0× (1− xe0) = xe0,

i.e. identical to the initial value of (11). In other words, (11)
does not encourage exploration.

Rather than naively maximizing the probability of satis-
faction, which can discourage exploration, we also consider
it a positive outcome if the exploration phase shows that
the probability of completing the mission is very low. Based
on such knowledge, resources can be redirected to more
promising objectives. We can separate possible outcomes of
the exploration phase into:

1) High confidence in mission completion, i.e.,

R(xeTc
) ≥ 1− δacc, (12)

where δacc is the maximal failure risk for which the
rover mission can be accepted,

2) Very low confidence in mission completion, i.e.,

R(xeTc
) ≤ δrej , (13)

where δrej is the maximal rejection risk for which the
rover mission can be aborted,

3) Neither low nor high confidence in mission completion,

δrej ≤ R(xeTc
) ≤ 1− δacc. (14)

The third outcome is the least useful for decision-making pur-
poses as it is associated with the largest degree of uncertainty
about task feasibility.

Based on this classification, we consider the mission explo-
ration a success if it results in xTc

e being either in the “accept
region” or in the “abort region”. We can encode this condition
as a subset of the copter-environment space

Yδ = Xcop ⊗ {xeTc
s.t. (12) or s.t. (13)}, (15)

and specify the exploration objective as

max
µ2

PM2
µ2

[
x2

[0,Tc] |= ♦Yδ | x2
[0] = (xc0, x

e
0)
]
, (16)

where we have used the symbol Yδ as an atomic proposition
for the associated target set. Again, this is a reachability
objective, and the associated optimal probability and policy
can be computed via the value iteration (8). Similar reachabil-
ity objectives for uncertainty reduction have previously been
proposed in the context of experiment design [14].

C. Overview

The solution developed in this section is summarized in the
following algorithm:

Algorithm 1: Synthesize Exploration and Mission
Plans

Plan Mission
1 Construct extended MDP M1 for specification ϕ;
2 Define target set Xf = Xrov ⊗ Xenv ⊗Qf ;
3 Solve the reachability problem (7) via value

iteration to get mission policy µ1 and mission
risk R(xeTc

)
Plan Exploration

4 Construct extended MDP M2 as in (9);
5 Define target set Yδ based on R(xeTc

) and on
δacc, δrej as in eq. (15);

6 Solve the reachability problem (16) via value
iteration to get exploration policy µ2

IV. VALUE ITERATION FOR PRODUCT MDPS

As detailed in the previous section, the aggregate systems
M1 and M2 for the two phases are both formed as MDP
products. Explicit construction of these aggregate systems
quickly becomes computationally challenging. In this section,
we show that explicit construction is not required for certain
types of value iteration—it can be performed recursively over
the product components.

Given a function g : X × R+ → R+, consider a general
Bellman operator2 B on the following form:

(BV)(x) = max
u∈U

g (x,E [V (x′) | x, u]) , (17)

where g is a problem-specific function and the value function
V : X→ R+ is a positive mapping defined on the state space
X. For example, g(x, v′) = max(1Xf

(x), v′) corresponds to
the Bellman operator for reachability of a set Xf that we
employed in Section III. Finite-horizon value iteration over a
horizon [0, T] consists of the following iterations:

V T (x) = g(x, 0), V t−1 = BV t,
µt−1(x) ∈ arg max

u∈U
g
(
x,E

[
V t(x′) | x, u

])
. (18)

We consider the Bellman iteration step for product MDPs. For
a serial product M = M1 ⊗Cser M2 we get

EM [V (x′1, x
′
2) | x1, x2, u1]

= EM1
[
EM2 [V (x′1, x

′
2) | x2, C(x′1)] | x1, u1

]
,

where we note that the inner expectation is a function of x2

and x′1, but not of x1. It follows that the Bellman update V 7→
BV for a serial product can be computed in back-stepping
fashion with an intermediate result W as follows:

W (x′1, x2) = EM2 [V (x′1, x
′
2) | x2, C(x′1)] ,

BV (x1, x2) = max
u1∈U1

g
(
(x1, x2),EM1 [W (x′1, x2) | x1, u1]

)
.

Each step only requires knowledge of a single MDP compo-
nent. Furthermore, the procedure immediately generalizes to
n-length serial products where the (n− i):th step becomes

Wi(. . . , x
′
i−1, xi, xi+1 . . .)

= EMi
[
Wi+1(. . . , x′i−1, x

′
i, xi+1 . . .) |xi, Ci(x′i−1)

]
.

(19)

Remark 1. In serial products of arbitrary length a connection
Ci can be defined either as Ci : Xi−1 → Ui, or as Ci :∏
j∈Γi

Xj → Ui for some index set Γi ⊂ {1, . . . , i − 1} that
determines which preceding systems that affect the input to
system i.

In addition, if Mi is itself a serial or parallel product, the
computation (19) can again be performed via recursive back-
stepping. If for instance Mi = Mi1 ⊗par Mi2 is a parallel
product we can write xi = (xi1 , xi2) and (19) can be computed
as

Wi1(. . . (x′i1 , xi2) . . .)

= EMi2

[
Wi+1(. . . (x′i1 , x

′
i2) . . .) | xi2 , Ci(xi−1)

]
,

Wi(. . . (xi1 , xi2) . . .)

= EMi1

[
Wi1(. . . (x′i1 , xi2) . . .) | xi1 , Ci(xi−1)

]
.

(20)

As a consequence, for any aggregate system constructed from
a hierarchy of serial and parallel products, iterative value
function computation for this type of Bellman operator can be

2For this set of Bellman recursions, the control input does not directly
impact rewards—it only influences the value function via its effect on the
next state distribution.

performed without explicitly computing any aggregate transi-
tion probabilities. The back-stepping approach is advantageous
when the connections are sparse, i.e., when the connection
mappings C can be compactly represented.
Related Work. The back-stepping Bellman computation is an
example of a sum-product algorithm [19]—a concept that has
recently been used for computation of probabilistic invariance
[11]. A generalization of serial and parallel products are
factored MDPs [8]. In a factored MDP with local states
x1, . . . , xn the state update for xi depends only on the scope
Γi, i.e. T (xi | x1, . . . , xn) = T (xi | xj , j ∈ Γi). Evidently,
this structure encompasses parallel and serial products: in a
serial product Γi = {i − 1, i}, whereas in a parallel product
Γi = {i}. This structure has been exploited to obtain approx-
imate methods for standard reward-based Bellman recursions
[8, 13, 19]. Related ideas for value function approximation
can potentially be used also within our framework to improve
scalability further.

V. CASE STUDY

We now apply our ideas in a case study. After introducing
concrete models for rover, copter, environment belief, and
measurements, we showcase the use of specification-guided
exploration for different specifications and environments.
Abstract Robot Models. In practice, robotic systems operate
in continuous domains, but value iteration is intractable over
continuous state spaces. Methods to construct finite approxi-
mations of continuous models include abstraction-based [32]
and sampling-based [2, 17] methods; an alternative is to
employ approximate methods directly on the continuous state
space [25]. For the purpose of clarity, we bypass these steps
here and directly introduce finite-state models that capture
the essential dynamics of agents that move around in a
workspace. We denote the location of robot and copter with
xr ∈ R2 and xc ∈ R3. For a given domain Xr ⊂ R2 and
Xc ⊂ R3 we introduce abstract states ξr ∈ [Xr]Nrx,Nry and
ξc ∈ [Xc]Ncx,Ncy,Ncz , where e.g. Nrx is the number of discrete
states along the x axis.

We assume that low-level controllers are available for both
robots so that they can move east, north, west, or south
between the discrete states while remaining in the workspace,
and that the copter can additionally adjust its elevation by
moving up and down. With these assumptions, we can model
the rover with an MDP Mrov with NrxNry states and 4 inputs,
and the copter as an MDP Mcopt with NcxNcyNcz states and
6 inputs. In the following we fix Nrx = Nry = Ncx = Ncy =
10 and Ncz = 2, i.e. both robots move on a 10x10 grid in 2D
space, and the copter can fly at two different altitudes (in the
following referred to as high and low).
Environment Belief Model. We assume that regions of inter-
est have been extracted from low-resolution satellite imagery,
along with prior probability estimates for the likelihood that
the regions exhibit certain traits. Here we restrict attention to
risk regions that may contain obstacles that the rover can not
traverse, and target regions that are likely places where scien-
tific samples can be extracted. We associate to each region i

p0p− p+ 10

p01− p0

p01− p0 1

Fig. 5. Illustration of the environment belief model for a single region, only
transitions from the initial state p0 are shown. When a high-quality measure-
ment is received (blue edges), the belief transitions to 1 with probability p0
and to 0 with probability 1− p0, whereas a low-quality measurement yields
beliefs p− or p+. If no measurement is taken (black) the state is unchanged.

a belief MDP Mei with five states ζ ∈ {0, p−, p0, p+, 1} and
three inputs v ∈ {NM,WM,SM} for (N)o (M)easurement,
(W)eak (M)easurement, and (S)trong (M)easurement. The
transition matrices are TNM = I5,

TWM =

[
1 0 0 0 0
0 1 0 0 0
0 1−p0 0 p0 0
0 0 0 1 0
0 0 0 0 1

]
, TSM =

 1 0 0 0 0
1−p− 0 0 0 p−
1−p0 0 0 0 p0
1−p+ 0 0 0 p+

0 0 0 0 1

 .
The outgoing transitions from p0 are illustrated in Figure
5. Given belief MDPs Mei for every region of interest, we
construct the environment model Menv as the parallel product

Menv = Me1 ⊗par Me1 ⊗par . . .⊗par Men .

Specification. The objective of the mission is to satisfy a
scLTL specification ϕ over propositions over states in Mrov

and Menv . We consider two basic types of propositions:
• Do not be in a risk region R that may contain an obstacle:
ξr 6∈ R ∨ ζR = 0.

• Collect a sample at region A: ξr ∈ A ∧ ζA = 1.
We posit that the rover has a time window of length Tr to

fulfill its mission, and that the copter has battery sufficient to
operate for a time Tc. In addition, the copter must land in a pre-
designated landing area Xl at the end of the execution. This
auxiliary objective is straightforward to incorporate into (16)
by restricting the value iteration to policies that land safely
with some high probability 1− δl.
Measurement Model. We connect the systems in serial as
given by (4) and (9). The serial products are defined via
connections given as follows:
• If the rover is adjacent to a region, it takes a (S)trong

measurement of that region,
• If the copter is at low altitude and inside a region, it takes

a (S)trong measurement of that region,
• If the copter is at high altitude and within distance 2

(infinity norm) of a region, it takes a (W)eak measurement
of that region.

A. Scenarios

We demonstrate the features of the proposed solution in
a few example scenarios. In all scenarios we assume that a
weak measurement has accuracy 0.85, i.e. that a positive weak
measurement yields a belief state ζ = 0.85. We limit the rover
to Tr = 15 steps and the copter to Tc = 30 steps. Since
the rover moves much slower than the copter these two time

intervals are not directly comparable: the copter will complete
its 30 steps much faster than the rover completes 15 steps.
In other words, the sampling times are different. Furthermore
we set δacc = δrej = 0.1 which implies that the goal of the
exploration phase is to show that the mission can be completed
with at least 90% probability, or that the success probability is
at most 10%. For these examples, policy synthesis for both the
mission and exploration phases takes around 60 seconds on a
2GHz laptop, using our prototype Python implementation.

Scenario 1. The left part of Fig. 6 illustrates the Kimberly
region in the Mars Gale Crater where regions have been
labeled as obstacles (red), risk regions (orange) and science
target regions (blue). While the obstacle regions R1 − R3

have been determined to be non-traversable, there is a rock
area R4 and a sandy area R5 that may be possible to cross.
The objective is to collect a sample from any one of the three
target regions while avoiding obstacles, i.e. the specification
is ϕ = ¬obstacle U sA, where the atomic proposition
obstacle is true if the rover is in a risk region that contains
an obstacle, and sA is true if the rover is in a target region
that contains a science sample.

We consider a scenario where the initial probability of
specification satisfaction is high: there is a high estimated
probability that a sample can be extracted from the easy-
to-access region A3. However, when the rover reaches A3

it turns out to be empty and the probability of mission
failure increases. At this moment additional exploration is
warranted to reduce the mission uncertainty, so we apply
specification-guided exploration to decide on the continuation
of the mission.

With the two-stage approach described in Section III we can
compute 1) a mission policy for the rover and the associated
risk function R(ξeTc

), and 2) a policy for the copter that
maximizes the probability of reaching a state where R(ξeTc

)
is either close to 0 or close to 1. In Fig. 7 the resulting
team behavior is illustrated for two configurations of the
environment: one where the specification can be satisfied and
one where it is infeasible and the mission is aborted. There
is no need to re-compute a mission policy after exploration—
only the environment belief state is changed, and the mission
policy is optimal for all belief states. The following video
shows excerpts from a simulation of the successful exploration
and mission: https://youtu.be/ZKKFOiXSeaw.

Scenario 2. To further illustrate exploration and coopera-
tive behavior, we consider the artificial example depicted
in the right part of Fig. 6. The specification is as fol-
lows: either collect samples of both types A and B, or
collect a sample of type C, while avoiding obstacles. Letting
♦oϕ = ¬obstacle U ϕ, the specification can be written
(♦osA ∧ ♦osB)∨ (♦osC). The atomic proposition sA is true
if ξr ∈ A (rover is in region A) and ζA = 1 (sample detected
in A), and similarly for sB and sC.

Executions generated from the resulting copter and rover
policies are shown in Fig. 8 for different configurations of
the true environment. With only prior knowledge about the

https://youtu.be/ZKKFOiXSeaw

R1

R2

R3

R4

R5

A1

A2

A3

R3

C

R2

A

R1

B

Fig. 6. Views of the two example work spaces where regions of interest are
marked. In the left scenario the prior probabilities for A1, A2, A3, R4, and
R5 are 0.5, 0.5 0.9, 0.4 and 0.3, respectively. In the right scenario the prior
probabilities are 0.5 for all regions except R2 which is a known obstacle. Each
abstract state is illustrated with a dot. The black square marks the required
landing zone for the copter.

0.5
1

t

P(x |= ϕ)

0.5
1

t

P(x |= ϕ)

Fig. 7. Above: Trajectories of the rover (orange dash-dot) and copter
(solid teal/purple for low/high elevation), for two environment configurations.
Non-filled regions indicate that the true state is equal to 0, i.e. there is no
sample or obstacle. Below: Estimated probability of specification satisfaction
over time. In the initial mission phase (green), the rover moves towards a
target area that has a high sample probability of 0.9. However, the target
area unexpectedly turns out to not contain a sample and the probability of
specification satisfaction decreases to around 0.5. This triggers an exploration
phase (blue) where the copter attempts to find out whether the mission can
be completed or not. This succeeds in the illustration to the left where A1

contains a sample and the rover proceeds with its mission, but fails in the
case to the right where A1 is empty and the mission is aborted.

environment, the probability that the rover can satisfy the
specification is R(ξe0) = 0.25. However, after the copter
exploration significant amounts of uncertainty are removed:
for the two upper feasible examples in Figure. 8, R(ξeTc

) = 1
and 0.85 respectively, where ξTc

e is the environment belief
state after copter exploration, and R(ξeTc

) = 0.075 for the
lower infeasible examples. This shows that the generated
policy explores the environment in a way that efficiently
reduces uncertainty about whether the specification can be
satisfied. For comparison also the optimal behavior without
copter exploration is illustrated; it turns out that the optimal
behavior is to bet that there is a reachable sample in region C.
This succeeds only in the upper right scenario (the trajectories
overlap). In the upper left scenario, the guess is wrong and in
the lower scenarios rover locomotion time is wasted trying to
complete an impossible mission.

In conclusion, both scenarios showcase the benefit of explo-
ration, and in particular that specification-guided exploration

0.5
1

t

P(x |= ϕ)

0.5
1

t

P(x |= ϕ)

0.5
1

t

P(x |= ϕ)

0.5
1

t

P(x |= ϕ)

Fig. 8. Illustration of the copter and rover policies for different environment
configurations in the artificial scenario. Interpretation is equivalent to that of
Fig. 7. All four executions are generated by the exact same policies; they
adapt according to what is encountered in the environment. In the upper
two examples the exploration phase shows high likelihood of specification
satisfaction, whereas in the lower examples the specification is found to
likely be infeasible and the mission is aborted. For comparison, also the
corresponding trajectory and probability without exploration are plotted with
black dotted lines.

can efficiently collect information required to decide whether
a mission should be continued or aborted.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a modeling framework for coopera-
tive robot teams operating in uncertain environments. Within
this framework we have solved the environment exploration
problem in a specification-dependent manner via a dynamic
programming-based solution. This specification-dependent so-
lution allows for targeted exploration of large unknown envi-
ronments. We have shown that the curse of dimensionality in
value iteration can be partially mitigated by using only implicit
representations of the aggregate systems, but this does not
completely solve the scalability issue: an exact representation
of the value function is invariably proportional to the size of
the aggregate state space, which in turn grows exponentially
with the number of system components.

For future work, we are interested in improving scalability
further by using approximate value function representations,
and in incorporating more complicated environment models
for which more knowledge about one region also says some-
thing about neighboring or similar regions.

REFERENCES

[1] A. Abate, S. S. Sastry, M. Prandini, and J. Lygeros. Prob-
abilistic Reachability and Safety for Controlled Discrete
Time Stochastic Hybrid Systems. Automatica, 44(11):
2724–2734, 2008.

[2] A. Agha-mohammadi, S. Chakravorty, and N. M. Amato.
FIRM: Sampling-based feedback motion-planning under
motion uncertainty and imperfect measurements. The
International Journal of Robotics Research, 33(2):268–
304, 2014.

[3] A. Agha-mohammadi, E. Heiden, K. Hausman, and
G. Sukhatme. Confidence-rich grid mapping. In Inter-
national Symposium on Robotic Research, 2017.

[4] J. Aloimonos, I. Weiss, and A. Bandyopadhyay. Active
vision. International Journal of Computer Vision, 1(4):
333–356, 1988.

[5] C. Belta, B. Yordanov, and E. A. Gol. Formal Methods
for Discrete-Time Dynamical Systems. Springer, 2017.

[6] D. P. Bertsekas and S. E. Shreve. Stochastic Optimal
Control: The Discrete Time Case. Academic Press, 1978.

[7] A. Blake and A. Yuille. Active vision. MIT Press, 1992.
[8] C. Boutilier, R. Dearden, and M. Goldszmidt. Stochas-

tic dynamic programming with factored representations.
Artificial Intelligence, 121(1-2):49–107, 2000.

[9] E. Cristofalo, K. Leahy, C. I. Vasile, E. Montijano,
M. Schwager, and C. Belta. Localization of a Ground
Robot by Aerial Robots for GPS-deprived Control with
Temporal Logic Constraints. In Proc. ISER, pages 525–
537, 2016.

[10] A. J. Davison and D. W. Murray. Simultaneous localiza-
tion and map-building using active vision. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 24
(7):865–880, 2002.

[11] S. Esmaeil Zadeh Soudjani, A. Abate, and R. Majumdar.
Dynamic Bayesian networks for formal verification of
structured stochastic processes. Acta Informatica, 54(2):
217–242, 2017.

[12] H. J. S. Feder, J. J. Leonard, and C. M. Smith. Adaptive
mobile robot navigation and mapping. International
Journal of Robotics Research, 18(7):650–668, 1999.

[13] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman.
Efficient solution algorithms for factored MDPs. Journal
of Artificial Intelligence Research, 19(c):399–468, 2003.

[14] S. Haesaert, P. M. Van den Hof, and A. Abate. Experi-
ment design for formal verification via stochastic optimal
control. In Proc. ECC, pages 427–432, 2016.

[15] A. Jones, M. Schwager, and C. Belta. Distribution
temporal logic: Combining correctness with quality of

[17] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Over-
mars. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. IEEE Transactions on

estimation. In Proc. IEEE CDC, pages 4719–4724, 2013.
[16] S. Karaman and E. Frazzoli. Sampling-based Optimal

Motion Planning with Deterministic µ-Calculus Specifi-
cations. In Proc. ACC, 2012.
Robotics and Automation, 12(4):566–580, 1996.

[18] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas.
Where’s Waldo? Sensor-based temporal logic motion
planning. In Proc. IEEE ICRA, pages 3116–3121, 2007.

[19] F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Factor
graphs and the sum-product algorithm. IEEE Transac-
tions on Information Theory, 47(2):498–519, 2001.

[20] M. Lahijanian, S. B. Andersson, and C. Belta. Temporal
logic motion planning and control with probabilistic
satisfaction guarantees. IEEE Transactions on Robotics,
28(2):396–409, 2012.

[21] K. Leahy, A. Jones, M. Schwager, and C. Belta. Dis-
tributed information gathering policies under temporal
logic constraints. In Proc. IEEE CDC, pages 6803–6808,
2015.

[22] S. C. Livingston and R. M. Murray. Just-in-time syn-
thesis for motion planning with temporal logic. In Proc.
IEEE ICRA, 2013.

[23] M. Maly, M. Lahijanian, L. E. Kavraki, H. Kress-Gazit,
and M. Y. Vardi. Iterative Temporal Motion Planning for
Hybrid Systems in Partially Unknown Environments. In
Proc. HSCC, pages 353–362, 2013.

[24] B. Mu, M. Giamou, L. Paull, A. Agha-mohammadi, J. J.
Leonard, and J. P. How. Information-based active SLAM
via topological feature graphs. In Proc. IEEE CDC.

[25] W. B. Powell. Approximate Dynamic Programming.
Wiley, 2011.

[26] S. Soatto. Actionable information in vision. In Machine
learning for computer vision, pages 17–48. Springer,
2013.

[27] C. Stachniss. Robotic mapping and exploration. Springer,
2009.

[28] M. Svorenova, I. Cerna, and C. Belta. Optimal control
of mdps with temporal logic constraints. In Proc. IEEE
CDC, pages 3938–3943, 2013.

[29] S. Thrun, W. Burgard, and D. Fox. Probabilistic
Robotics. MIT Press, 2005.

[30] S. Thrun et al. Robotic mapping: A survey. In Exploring
artificial intelligence in the new millennium, pages 1–35.
2002.

[31] C. I. Vasile and C. Belta. Sampling-Based Temporal
Logic Path Planning. In Proc. IEEE/RSJ IROS, 2013.

[32] M. Zamani, A. Abate, and A. Girard. Symbolic models
for stochastic switched systems: A discretization and a
discretization-free approach. Automatica, 55:183–196,
2015.

	Introduction
	Problem Setup
	Markov Decision Process Models
	Formal Specifications
	Problem Decomposition

	A Stochastic Optimal Control Approach
	Optimal Control Solution of Mission Problem
	Optimal Control Solution of Exploration Problem
	Overview

	 Value Iteration for Product MDPs
	Case Study
	Scenarios

	Conclusions and Future Work

