|JRET: International Journal of Research in Engineering and Technology

el SSN: 2319-1163 | pl SSN: 2321-7308

BATCH ARRIVAL RETRIAL QUEUING SYSTEM WITH STATE
DEPENDENT ADMISSION AND BERNOULLI VACATION

J. Ebenesar Anna Bagyam®, K. Udaya Chandrika®

!Assistant Professor, Department of Mathematics, SNS College of Technology, Coimbatore, India,
2Professor, Department of Mathematics, Avinashilingam Deemed University for Women, Tamil Nadu, India,
ebenesar.j@gmail.com, udayachandrika@gmail .com

Abstract
A single server batch arrival retrial queue with server vacation under Bernoulli schedule is considered. Arrivals are controlled
according to the state of the server. The necessary and sufficient condition for the system to be stable is derived. Explicit formulae for
the stationary distributions and performance measures of the system in steady state are obtained. Numerical examples are presented
to illustrate the influence of the parameters on several performance characteristics.
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1. INTRODUCTION

Retrial queues have the feature that arriving ensets finding
no free servers must leave the service area arehtrépeir
demands for service after a random time. A custameaid to
be in orbit between two retrials. Nowadays, retdaleues
have become increasingly important in the analysfs
computer and communication networks. For recenegapn
retrial queues, see [1], [3], [4], [5] and [13].

In recent years queues with server vacation havergsd as
an important area of research due to their varapmication
in production systems, communication systems, caenpu
networks and etc. Some comprehensive studies oretlent
results for a variety of vacation models can bentbin [6],
(7], [10], [11], [12], [14].

In many queuing situations, the customer’s arried varies
according to the server state idle, busy and oratiat
Altman et al. [2] considered the state dependdntG /1 type
queuing analysis for congestion control in datawoeks.
Madan and Abu-Dayyeh [7] and Madan and Choudhuty [8
have investigated classical queuing system withrictsd
admissibility of arriving batches and Bernoulli sar
vacation. This paper examines the state dependsriglr
queuing system with bulk arrival and server vacatidhe
similar situation of retrial can be realized in lame ticket
booking centres.

2. SYSTEM DESCRIPTION

Consider a single server infinite capacity quefamglity with
batch arrival. One of the arriving customers bedgjissservice

immediately if the server is available and the riming
customers leave the service area to join the orbit.

The arrival epochs occur in accordance with a Boiggocess
with rateA and the number of arrivals at each epoch is a
random variablX having distribution P[X =n]=c, and

momentsEn, n=>1Successive inter retrial times of any
customer in orbit is generally distributed with tdisution

function A(x) and Laplace transformA”(s). The service
time is a random variable with distribution funetid3(x),

Laplace transformB”(s) and finite momentsgt,, ,n>1.

After completion of each service, the server maketa
vacation with probabilityd or may continue to be in the
system with complementary probability. The vacattones
are generally distributed with distribution functioV (x),

Laplace transformv™(s) and finite moments/,, ,n>1.

The arriving batches are allowed to join the systeith state
dependent admission control policy. Lef,a, and a;be the

assigned probabilities for an arriving batch tmjtie system
during the period of idle, busy and vacation timespectively.

The hazard rate function of retrial time, serviomet and
vacation time are defined as

_ax)
100 = 7200

b0 . gy = V00

M= o0 P T T
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3. THE JOINT DISTRIBUTIONS

The stage of the system at tintecan be described by the
Markov ~ process {(M(t);t=0}={J(t),N(t),&; (t);t=0,

i =0,i =012} where J(t) denotes the server statf12

according as the server being idle or busy or aratran and
N(t) denotes the number of customers in the retrial euu

time t. If J(t)=0and N(t) >0, then &, (t) represents the
elapsed retrial time, if J(t)=1land N(t)>0, &, (t)
corresponds to the elapsed service time of thomestat time
5, and if J(t)=2 and N(t)>0, &,(t)corresponds to the
elapsed vacation timée

For the procesgM (t);t 20}, define the probabilities
I, (t) =P{J(t) = 0, N(t) =0}

I, (t,x)dx=P{J(t) = O,N(t) = n,x < & (t) < X +dx}, n =1
W, (t,x)dx =P{J(t) =1, N(t) = n,x <& () < x +dx}, =0
V,, (t,x)dx=P{J(t) = 2,N(t) =n,x < &, (t) < x +dx}, n=0

Let 14,1, (x), W, (x)and V,(x) are the limiting densities of
o (1), I, (t,X), W, (t,x) and V,, (t,x).

Define the probability generating function

I (z,x) = iln(x)z”; W(z,x) = iwn (x)z";
n=1 n=0

V(z,x) = ivn (x)z" andc(z) = icnzn
n=1 n=1

4. ERGODICITY CONDITION

Let {t,,nON}be the sequence of epochs of the service
completion times or vacation termination times. Bleguence
of random vectorsQ, = {J(t;),N(1,)} forms a Markov

chain, which is the embedded Markov chain for ouewgng
system with state space S ={0, 1, 2} x{0, 1,.3, .

Theoreml

{Q, .n>1}is
Ca[L- A%(aM)] + ACa[0 oy + 58 vy ]<1

ergodic if and only if

Pr oof

{Q, ,n=1}is an irreducible and aperiodic Markov chain. To

prove ergodicity, we shall use Foster’s criterionAn
irreducible and aperiodic Markov chain is ergodicthere
exists a non negative functidr(j), jON and € >0such that

the mean driftW; =E[f(Q..1) —f(Q,)[Q, =]lis finite for
all jUNand ¥; <-¢ for all jJN, except perhaps a finite
number.

Takef (j) =j. Then we have

w - Ci[L- A%(a\)] +ACa[a oy + 058V ,] -1 if j= 123....
" INCila,(1-6) +a0 v, -1 if j=0

Clearly, the
Ci[1-A D(0(1)\)] +ACi[a,l, +050v,]<1 is a sufficient
condition for ergodicity. The same inequality is@hecessary

for ergodicity. We can guarantee the non-ergodicitythe
Markov chain {Q,,n=1}, if it satisfies Kaplan’s condition,

namely W; <co for all j0J N and there existg, [ N such that

inequality

W, 20for j= j,.In our case, Kaplan’s condition is satisfied
because there existe INsuch thatr; =0for j<i-kand

i >0,where R=(r;)is the one step transition matrix of
{Q,,n=1}. Then the inequality
Cal- A%(a M) + ACa[a, + 030V, ]<1 implies the non
ergodicity of the Markov chain.

Since the arrival stream is a Poisson processnithe shown
from Burke’s theorem that the steady state protegdsil of
{3(t),N(t),t =0} exist and are positive if and only if

CafL- A%(a A)] + ACa[a, +a 50 v, |<1.

From the drift W=
Ci[1- A(0;A)] +ACifa,u, +as8v,]-1, for j>1 we have

mean

the reasonable conclusion that the temEl[a oMy +030v,]
represents a batch arrival during service time amdacation

time. The other termEl[l—AD(al)\)]—l refers to the

contribution to the orbit size due to batch arridalring the
retrial time excluding the arbitrary customer o thrriving
batch whose service commences so that he no |d&dengs
to the orbit. Similar interpretation can be prodder j=0.

the condition¥; <Oassures that the orbit size does not grow
indefinitely in course of time.

Volume: 02 Issue: 10 | Oct-2013, Available @ http://www.ijret.org

375




IJRET: International Journal of Research in Engineering and Technology el SSN: 2319-1163 | pl SSN: 2321-7308

5. STEADY STATE PROBABILITY o
1(z0) = [V(zx)B(x)dx
GENERATION FUNCTION 0
The steady state equations that governs the sysigsher o f _
consideration are ta 9)-([ Wz x)p (x)dx=Alg (12)
Mo = ] Vo (0B (X)dx+ (1-8) [ Wo (OM(X)dx (1) WEZ0) = 1z0)[A (e )+ c2)a-Aa )]
0 0 +A1C(2) (13)
%ln(x) = —A+n X)), (X)+A@-ay)l, (x),n=21(2) V(z0) = 8W(z0)B (a,A(1-c(2)) (14)
q Substituting the expressions &f(z,x) and W(z, x) in terms
&Wn X) = —~A+puX) W, (X)+A@d-a,) W, (x) of W(z,0) in equation (12), we get
$Xa, @-80) ) & Wy y (0,020(3) 1(z0) = 6 W(z0)B (a,A1-c(2)) V (azh 1~ c(2)))
q K +(1-08)W(z0)B (0 ,A1-c(2)) -Al,
&Vn (x) = ~(A+B(X) V,y () +AQ-a3) V() = W(z,0) B (0, (1-c(2)))
n 1-0+0V 7 (aA (- 2 15
A 50 ¥ 6 Vs 020 @) [1-6+6V (azA@-c@))]-Alo (15)
K Using the expressior (z,0)in equation (13) and simplifying
With boundary conditions we obtain
o o W(z0) = AlyA%0,A\)[1-c(z)]/D(2) (16)
1y 0)= [ Vi (B (X)dx+ (1= 8) [ W, (x)u (x)dx,n 21(5)
0 0 Where
W, (0) = Ac1|0+°f|l(x)n(x)dx (6) D(2) = BY(a,A(1-c(2)) [1-6+6V (a 3\ (1-c(2))]
0 [A%(a; A )+ c@)a-A(a)] -2 a7)
W.(0) = Acul, +°j’| 00N 0)dx Now equations (15) and (14) become
o 1(20) = Alo{z-c(2)B (@)1 c@)
tAay !)Elck lhokea (dxn=1 - (7) [1-8+68V(a s\ 1~ c@)]} / D(2) (18)
w V(z0) = AlgA%(a;A)[1-c(z)]8B (0, (1-c(2))
Vo0 = 8[W, (xu(x)dx,n=0 ®) /D) (19)
0
Theorem 2

From the equations (2) — (8) we have,

Using equilibrium state, the joint distribution thie server has
lzX) = 1(z0)e "™ [1-A(x)] 9) the following partial generating functions

lo [2— ¢(2) B (a1, (1 c(2))) [1-A (a;)]
[1-8+8V "(a3A(1-c(@)]} /[a;D(2)] (20)

W(zx) = W(z0)e 2 E@Xx 1-pg(x)] (10) @)

V(z,X) V(z,0)e7%3 Ec@)x 1 - v/ (x)] (11)

W(z)

lo A%(a;A) [1-B(ar oA (- c(2))]} /[ ,D(2)]
(21)
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V() = 1,A%aM)0B (a,\(1-c(2)))
[1- V" (a A @- @)} /[osD(2)] (22)

I = o,T,/T, (23)

Where

T = 1-Ci[1- A%(aA)] - ACa[ H; + 50V, ]

T, = oy T+ A-ASaA)(AY@A)C-T))

+ay AP A)ACafp +0v,]
Pr oof

Substituting forl (z,0), W(z,0) and V(z,x) given by equations
(9), (10) and (11) and integrating with respecktfsom 0 to
o we get the results given in equations (20) — (22).

Now, the unknown constarlt; given in equation (23) can be
determined by using the normalizing condition
o+ 1IQ+WD+VQ@D)=1

6. MEAN ORBIT SIZE AND MEAN SYSTEM SIZE
Theorem 3

The probability generating function of the numbgcwastomer
in the orbit is

= lg[6a,0,@-a3)A D(al)\)BD(a 2A(1-c(2))
[1-V (@A @-c@)] —a; @-a,)o;
B"(a ;A (1 c(2))A™(a;\)
-(@-a)aaz[1-A D(a 1A)]e(z)
B™(a,A (L-c(2))[1-8+0V (oA 1-c(2)))]
+0; 03A D(Gl)\)
+0,05z(L-ay —A7(a,\)} /a0 ,05D(2)]

R @

(24)

The probability generating function of number oktmmer in
the system is

1[0, 0, (-0 5) A (ayA)B (a A (1- c(2))
[1-V (@A @-c@)]

-0, 0, a5 A(0N) BY(a A (- c(2)))

- (@-0)o,05@-AY(a))

c(2)B (a, A (1-c(2)))

R@ =

[1-08+0V (oA 1-c(2)))]

+@-a;)a, azzA%a;N)

(o —a, —0a;BY(a A L~ c(2))}
/[a0,0,3D(2)] (25)

Pr oof

The probability generating function for the numbef
customer in the orbit is

P@ = ly+1(@)+W(@+V(2) and

The probability generating function for the numbef
customer in the system is

R@ = L+l@+z2W(@)+ V()

Substituting the expressions Idqk), W(z) and V(z), we get
the equations as in (24) and (25).

Corallary 1

The mean number of customer in the orbit is
Ly = No/T +NT5/(TqT,) (26)
The mean number of customer in the system is
Ly = Lg+A (a\)aACapy /T, (27)
Where
-2 -2

Ts = A2C1a,050p,Vv; +ACia,pu; 1-A(a,A)

-2 —2

+ACra30 v, 1-A(a,\)) +[Na35Cip,

-2 -
+003N2C1 v, + C2(1-A(a \))]/2
(1-0t;,) @-A(@;A) [Cr+a, A Capy

+a5A8C1 v, |- A-a; -A%a;))
+G1)\61AD(G1)\)[9(1‘0(3)V1 +(@-0p)Hy]

z
iy
1

N, = a; (-a5)8A @) a, A2 Crpy vy
+{oy 0y L-ag) AN AA)N Cr v,
+O‘10(2(1_02)AD(U1)\)7\2612 M2
+(-a,)a-A%aM\)[C2 +aZ A2 Cr py

2322 0
+003A°Crv,}/2+(@-0,)A-A(a 7))
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—2 —2

[0, AC1 Yy +azABCy v,
—2

+0030, A% Cp py V4]

Pr oof

Differentiating R, (z) and P,(z) with respect to z and taking
limit z - 1by using LHospital rule the expressions far,

and L ; can be obtained.

7. OPERATING CHARACTERISTICS

Some performance measures for the system are pelew.

1. The steady state probability that the server is idl the
empty system is

lg =0, T, /T,

2. The steady state probability that the servedlis in the
non-empty system is

I = 1-A%a\)][a, A Capy +005A Crv, +Cy 1]/ T,
3. The steady state probability that the servbusy is
W = o, A% M)A CLp, /T,

4. The steady state probability that the servemiwvacation
is

V = a, A%aA)8ACiv, /T,

5. The probability that the orbit is empty whileetkerver is
busy is

Wo = ay Ty[L-B (aN)]/ {a, T, BY(a,A)[1-8+8V(ash)]}

6. The probability that the orbit is empty whileetberver is
on vacation is

Vo = 00, Ty[1-V(ash)]/ {as T, [1-0+08V (o))}
7. The probability of orbit being empty is

E = Ig+Wy+V,
= oy Ty{a,0; B (P A)L-0+68V(az )]
+a3[1-B (a, )]
+0a, B0\ )[1-V (azh)}

8.NUMERICAL ILLUSTRATION

Numerical results are obtained when the serviceiateand
vacation times follow exponential distribution. Tatshows
the dependence of the performance measigek W, V and

L, for the fixed values of@®,3,0,,0,,05,¢,¢,)= (5, 5,
0.8, 0.5, 0.5, 0.5, 0.5). Figures show the efféctig,a,and
05 (joining probability during the period of idle, fy and
vacation) on the performance measuregthe mean number

of customer in the orbit for the parameters
2\ nu ,9,[3,(11,(12 ’GS ’C_I.’CZ) = (21 15! 51 51 51 081 051 05,
0.5, 0.5).

Tablel. Performance measures for the various values, pf

andn

Al RN Iy I w \ Lq
1 |10| 20| 0.7125 0.0281 0.1297 0.1207 0.0895
30 | 0.7213] 0.01883 0.1299 0.1299 0.0748
40 | 0.7258| 0.0141 0.1301 0.1301 0.0675
50 | 0.7284| 0.0113 0.1301 0.1301 0.0632
30 | 20| 0.7920 0.027]1 0.0452 0.13p6 0.0644
30 | 0.8007| 0.0181 0.0453 0.1359 0.0520
40 | 0.8051| 0.0136 0.0458 0.1360 0.0459
50 | 0.8077| 0.0109 0.0454 0.1361 0.0423
50 | 20| 0.8088 0.0269% 0.0274 0.1369 0.0608
30 | 0.8175| 0.0180 0.0274 0.1371 0.0489
40 | 0.8218| 0.0135 0.0274 0.1372 0.0429
50 | 0.8244| 0.0108 0.0275 0.1373 0.0394
2 | 10| 20| 0.4833 0.0608 0.2280 0.2280 0.3%65
30 | 0.5015| 0.0407 0.2289 0.2289 0.3005
40 | 0.5107| 0.0306 0.2294 0.2294 0.2738
50 | 0.5162| 0.0245 0.2296 0.2296 0.2581
30 | 20| 0.6129 0.0577 0.0824 0.24F1 0.2253
30 | 0.6307| 0.0386 0.0827 0.2481 0.1868
40 | 0.6396] 0.0290 0.0829 0.2486 0.1682
50 | 0.6450] 0.0232 0.082D 0.2488 0.1572
50 | 20| 0.6414) 0.0570 0.0503 0.2513 0.2075
30 | 0.6591| 0.0381 0.0505 0.2523 0.1717
40 | 0.6680| 0.0286 0.0506 0.2528 0.1543
50 | 0.6734| 0.0229 0.0506 0.2531 0.1441
3 | 10| 20| 0.2949 0.0964 0.3044 0.3044 1.0085
30 | 0.3227| 0.0647 0.3063 0.3063 0.8163
40 | 0.3367| 0.0487 0.3078 0.3073 0.7308
50 | 0.3451] 0.0390 0.3079 0.3079 0.6824
30 | 20| 0.4562] 0.0906 0.1133 0.3399 0.5360
30 | 0.4833| 0.0608 0.114D0 0.3419 0.4400
40 | 0.4970| 0.0457 0.1143 0.3430 0.3952
50 | 0.5052| 0.0367 0.1145 0.3436 0.3693
50 | 20| 0.4931 0.0893 0.0696 0.3480 0.4808
30 | 0.5200| 0.0599 0.0700 0.3501 0.3956
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40 | 0.5336| 0.0451 0.070R 0.3511 0.3556
50 | 0.5418| 0.0361 0.0704 0.3518 0.3324
4 5 )
4 n
o 3 ,"/
-, ‘,f --+--qal
AT e
0 L a3
0 0.5 1 1.5
Probability values
- J

CONCLUSIONS

Retrial queue with batch arrival admission conteohd
Bernoulli vacation has been investigated in thipgpa The
necessary and sufficient condition for the systerhd stable
is obtained. The inputs of the parameters on thmeance
measures are illustrated.
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