
IJRET: International Journal of Research in Engineering and Technology        eISSN: 2319-1163 | pISSN: 2321-7308 

 

_______________________________________________________________________________________ 
Volume: 04 Issue: 12 | Dec-2015, Available @ http://www.ijret.org                                                                                280 

AN EXACT SOLUTION OF EINSTEIN EQUATIONS FOR INTERIOR 

FIELD OF AN ANISOTROPIC FLUID SPHERE 
 

Lakshmi S. Desai 
Department of Mathematics, Faculty of Technology, Dharmsinh Desai University, Nadiad, Gujarat, India 

 
Abstract 

In this paper, an anisotropic relativistic fluid sphere with variable density, which decreases along the radius and is maximum at 
the centre, is discussed. Spherically symmetric static space-time with spheroidal physical 3-space is considered. The source is an 
anisotropic fluid.  
The solution is an anisotropic generalization of the solution discussed by Vaidya and Tikekar [1]. The physical three space 
constant time has spheroidal solution. The line element of the solution can be expressed in the form Patel and Desai [2]. The 
material density is always positive. The solution efficiently matches with Schwarzschild exterior solution across the boundary. It is 
shown that the model is physically reasonable by studying the numerical estimates of various parameters. The density vs radial 
pressure relation in the interior is discussed numerically. An anisotropy effect on the redshift is also studied numerically.  
 
Key Words: Cosmology, Anisotropic fluid sphere, Radial pressure, Radial density, Relativistic model.    
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1. INTRODUCTION 
The hypothesis of local isotropy is universal in the 
astrophysical studies of massive bodies. This is a reasonable 
first approximation for matter whose dominant properties 
depend on chemical forces (coulomb interaction, etc.). For 
the majority of systems that depend fully on general 
relativity it is the strong interactions which take over local 
physics. It is well known that these strong interactions are 
very complex and they are highly dependent on velocity, 
spin and parity. Therefore it is intricate to conclude from a 
prior consideration alone whether strongly interacting matter 
is locally isotropic or not. The theoretical study on realistic 
stellar models suggests that stellar matter could be 
anisotropic at least in certain density ranges                         
[ρ < 1015 g.cm –3].  
 
Additional possible source of local anisotropy would be a 
solid core. The calculations show that a solid state may 
occur for cold matter in the density range 4x1014 – 3x1015    

g. cm –3. However, the exact nature of such a state is not 
clear. Bowers and Liang [3] have made a detailed study of 
incompressible anisotropic fluid spheres for general 
relativity. According to their study, if anisotropy is present 
in the expected density range for relativistic stars (i.e. ρ< 
1015 g. cm –2), effects significantly on maximum equilibrium 
mass and surface red-shift parameters. The knowledge of 
possible anisotropic properties of dense matter may prove 
useful in understanding the physics of neutron stars and 
black holes, furthermore the possible connection between 
quasars and relativistic compact objects. 
 
It is implicit that the radial pressure is not equal to the 
tangential pressure in massive stellar bodies. Many 
researchers [4 – 8] have devoted significant attention to the 
problem of finding interior solutions of Einstein equations 
corresponding to static anisotropic fluid spheres. Patel and 

Mehta [9] have obtained an exact solution for a static 
anisotropic fluid sphere whose physical space constant time 
is pseudo spheroidal. This solution is free from singularity 
and satisfies the reasonable physical conditions. Mak et. al 
[10] studied spherically symmetric and static anisotropic 
stellar type configurations. 
 
Maurya et. al. [11] described anisotropic super – dense star 
models using charged perfect fluid distributions. A static 
spherically symmetric anisotropic quark matter distribution 
is described by Mak and Harko [12]. Thirukkanesh and 
Maharaj [13] have obtained general form linear equation for 
anisotropic matter distributions in the presence of the 
electromagnetic field. 
 
In many of the above mentioned solutions the density is 
assumed to be uniform. However, indeed, most of the stellar 
objects have variable density. Hence, solutions for 
anisotropic fluid spheres with variable density are physically 
more relevant. Most of the above solutions are such that the 
corresponding solutions for isotropic spheres cannot be 
recovered from them. This situation is not desirable. 
 
In this paper, a new exact solution for anisotropic fluid 
sphere with variable density distribution is discussed. In the 
absence of anisotropy, the solution reduces to the solution 
for the isotropic fluid discussed by Vaidya and Tikekar [1] 
for a relativistic model of a superdense star.  
 
In most of the above cited solutions, the physical 3-space 
constant time is spherical. The aim of the present 
investigation is to find an interior solution for anisotropic 
fluid sphere whose associated physical 3-space constant 
time is spheroidal. Vaidya et. al. [1] explained the space-
times, with physical 3-space spheroidal, in great detail. They 
have shown that the geometry of such a space-time is 
described by the metric Patel and Desai [2]. 
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where,  is an arbitrary function of r. Here k and R are 
constants, k<1. The line-element 1.1 is regular at all points 
where r2<R2. The coordinates are denoted as x1 = r,      x2 = 
, x3 = , x4 = t. When k=0, the physical 3-space            
constant time becomes spherical. 
 
2. THE FIELD EQUATIONS 
Metric 1.1 forms Einstein field equations for a static 
anisotropic fluid sphere of the space-time metric. Einstein 
field equations in the presence of matter are 
 
ܴ௜௞ −  ଵ

ଶ
 ݃௜௞ܴ = ߨ8−  ௜ܶ௞                                                   2.1 

 
The energy momentum tensor is considered here as 
 
௜ܶ௞ = ௜ݒ ߩ  ௞ݒ    + ℎ௜௞ ݌  +  ௜௞          2.2ݐ 

 
where, ݒ௜ =  ݁ఊ/ଶ ߜ௜௧ denotes the four velocity, ρ is the 
energy density, p is the isotropic pressure,                     
ℎ௜௞ = ௜ݒ ௞ݒ  −  (1/2)݃௜௞ is the projection tensor and ݐ௜௞ is 
the anisotropic pressure (stress) tensor given by  
 
௜௞ݐ = ௜ܿ](ݎ)ܵ  3√   ܿ௞ −  (1/3)ℎ௜௞]                                    2.3 
 
where, |ܵ(ݎ)| is the magnitude of the stress tensor and  
ܿ௜ =  ݁ఒ/ଶ ߜ௜௥ is a unit radial vector. The non-vanishing 
components of ௞ܶ

௜   given by 2.2 can be mentioned as   
 

ସܶ
ସ = , ߩ  ଵܶ

ଵ =  −  ቂ݌ +  ଶ ௌ
√ଷ
ቃ ,  

ଶܶ
ଶ =  ଷܶ

ଷ =   −  ቂ݌ −  ௌ
√ଷ
ቃ                2.4 

 
The tangential pressure  ୄ݌ and the radial pressure pr are 
expressed as, 
 
= ௥݌ ݌  + ଶ ௌ

√ଷ
  , = ୄ݌     ݌ −  ௌ

√ଷ
           2.5 

Thus, ܵ =  ଵ
√ଷ

௥݌]   −   [ ୄ݌    
 
With the help of the equations 1.1 to 2.5 the Einstein field 
equations become 

ߩ ߨ8 =  ଷ (ଵି௞)
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మ
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మ
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                           2.6 
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మ
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ቁ
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                            2.8 
 
In this paper, an overhead dash denotes differentiation with 
respect to r. 

3. A SOLUTION OF THE FIELD EQUATIONS 
Here there is a system of three equations 2.6 –2.8 for four 
unknown functions pr,     ୄ݌ , ρ and ݁ఊ. So there is one free 
parameter. In order to get an explicit solution, one more 
restriction is added on the behavior of these functions is set. 
In this paper the anisotropy     ݌௥ −  .is specified  ୄ݌
 
From the equations 2.7 and 2.8 it is necessary to see  
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మ
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ଶ
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ଶ
൨                   3.1 

 
The equations 2.6 illustrates that the fluid density is 
calculated by the curvature of the physical 3-space. Hence, 
conventional state equation is replaced by the geometrical 
requirement for a spheroidal physical three space. 
 
The anisotropy function S, the linear equation 3.1 can be 
solved if a suitable form is assumed. The relation 
 
ܵ 3√ߨ8 =  ି ఉ ௥మ

ோర ൬ଵି ೖೝ
మ

ೃమ
൰
మ                                                        3.2 

where  is an arbitrary constant is assumed. 
 
ܨ =  ݁ఊ/ଶ  
ଶݑ =  ௞

(௞ିଵ)  ቀ1−  ௥
మ

ோమ
ቁ    ݂݅ ݇ < 0     or 

ଶݑ =  ௞
(ଵି௞)  ቀ1−  ௥

మ

ோమ
ቁ    ݂݅ 0 < ݇ < 1      

 
The equation 3.1 now reduces to the convenient form 
 
(1 − [ଶݑ݀/ܨଶ݀] (ଶݑ  + [ݑ݀/ܨ݀] ݑ + ቂ 1 − ݇ + ቀఉ

௞
ቁቃܨ = 0               

                                                                                            3.3 
 
The points ݑ =  ± 1 are regular singular points whereas rest 
are regular points of this differential equation. If a series 
solution is looked for, of this equation in the form ܨ =
 Σܣ௜  ௜, the following recurrence relation for the coefficientsݑ 
 :௜ is obtainedܣ
(݊ + 1)(݊ + ௡ାଶܣ(2 = ቂ ݊ଶ −  2݊ + ݇ − ቀఉ

௞
ቁቃ ܣ௡            

 
If the parameters k and  have values such that 
 
݊ଶ −  2݊ + ݇ − 1 − ቀఉ

௞
ቁ = 0  

 
states n integral solutions from any of these two sets 
 
,଺ܣ, ସܣ,ଶܣ, ଴ܣ) … … . ), ,଻ܣ, ହܣ,ଷܣ, ଵܣ) … … . )  
 
These two sets contain finite elements and a finite 
polynomial is obtained in the solution series using the 
corresponding terms. The simplest relation between k and  
is ݇ =  −1−  ඥ1 +  which corresponds to n = 3. It is ߚ
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assumed that 1+ is positive. The solution of 3.3 
corresponding to this value of k can be expressed as 
 

ܨ = −ቀ1 ݖ ܣ  ଶ ௞ ௭మ

ଷ (௞ିଵ)
ቁ+ −ቀ1 ܤ    ௞ ௭మ

௞ିଵ
ቁ
ଷ/ଶ

                       3.4 
 
here, z2 = 1 – (r2 / R2) and A and B are arbitrary constants of 
integration. Here it should be noted that other closed form 
solutions of the equation 3.3 can also be obtained.  
 
The physical parameters ρ, ݌௥ ,ܽ݊݀ ୄ݌ for the solution 3.4 
are determined as follows: 
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ୄ݌ߨ 8 = ௥ + ఉ݌ߨ 8   (ଵି ௭మ)

ோమ (ଵି௞ା௞௭మ)
                                          3.7 

 
It should be noted that at the centre r=0, ݌௥ =  The . ୄ݌ 
density ρ and the radial pressure ݌௥  at the centre (r=0) attain 
the values  
 
଴ߩߨ8 =  ଷ (ଵି௞)

ோమ
                                                                   3.8 

௥బ݌ߨ8 =  3.9                                                                (ܤ,ܣ)݂
 
where, f(A, B) is defined by  
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௞ିଵ

ቁ
ଷ/ଶ
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                                                  3.10 
 
From 3.8 and 3.9 it is easy to see that 
଴ߩ)ߨ8 − (଴݌3  =  3.11                                  (ܤ,ܣ)݃ 
 
where, g(A,B) is defined by 
ଵ
଺

ଶܴ (ܤ,ܣ)݃   ቈ஺(ଷି௞)
ଷ(ଵି௞)

+ ቀ1 – ௞ ܤ 
௞ିଵ

 ቁ
ଷ
ଶൗ ቉ =  ஺ (௞ି ௞మି ହ)

ଷ(௞ିଵ)
+

ቀଵାଶ௞ ܤ 
ଵି௞

ቁ ቀ1−  ௞
௞ିଵ

ቁ
ଵ/ଶ

                                                  3.12 
 
At the centre, the physical requirements 
଴ߩ > 0 , ௥బ݌ ≥ 0  , ߩ − ௥బ݌3 ≥ 0                                      3.13 
 
should be satisfied. These requirements can be expressed as  
f(A,B) 0 ,       g(A,B)   0          3.14 
 
If the radius of fluid sphere is a, the exterior field (r  a) is 
uniquely expressed by the Schwarzschild exterior metric  

ଶݏ݀ =  ቀ1− ଶ௠
௥
ቁ ݀ݐଶ −  ቀ1− ଶ௠

௥
ቁ
ିଵ

ଶݎ݀   − ଶߠ݀) ଶݎ  +
 ଶ)                                                                      3.15߶݀ ߠଶ݊݅ݏ 

where, m is the mass of the sphere. 
 
The geometry of the interior solution (r  a) is expressed by 
the metric 

ଶݏ݀ =  ൤ݖ ܣ ቄ1−  ଶ௞௭మ

ଷ(௞ିଵ)
ቅ  + −ቀ1 ܤ  ௞௭

మ

௞ିଵ
ቁ
ଷ/ଶ
൨
ଶ

ଶݐ݀  −

 (ଵି௞ା௞௭
మ)

௭మ
ଶݎ݀   − ଶߠ݀ ) ଶݎ  +  ଶ)                   3.16߶݀  ߠ ଶ݊݅ݏ 

 
where, z2 = 1 – (r2 / R2) 
 
Any physically significant solution must satisfy the 
following boundary conditions: 

(i) The line elements 3.15 and 3.16 should match 
at the boundary r=a and 

(ii) The radial pressure pr must vanish at the 
boundary r=a. 

 
The above mentioned boundary conditions determine the 
constants m, A and B as 
 
ଶ௠
௔

 =  ௔మ (ଵି௞)

ோమ ൬ଵି ೖೌ
మ

ೃమ
൰
                                                               3.17 
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ቁ
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൭  ܤ– 
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మ
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ଵି௞
൱
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                       3.19 

 
From the expression 3.5 for matter density ρ we see that ρ 
stays positive throughout the configuration because k < 0. 
Since ߩᇱ is negative, the density decreases from the 
maximum value ߩ଴ at the centre as r increases. From 3.17 it 
is obvious that the mass parameter m is always positive. 
 
The requirement 
 

  
୐୧୫
୰→଴(௣ೝି ௣఼)

௥
= 0 

for anisotropic fluid spheres is trivially satisfied. If  = 0, 
k=( –2) and the anisotropy in the pressure vanishes. In this 
case the above solution reduces to the solution for isotropic 
fluid sphere discussed by Vaidya and Tikekar [1]. Therefore 
this solution is a generalization of Vaidya –Tikekar solution 
to an anisotropic case. 
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4. DISCUSSION 
On the boundary r = a density is, 
 

଴ߩߨ8 =  ଷ(ଵି௞)
ோమ

 ቀ1−  ௞௔
మ

ଷோమ
ቁ ቀ1−  ௞௔

మ

ோమ
ቁ

(ିଶ)
                         4.1 

 
The ratio ߩ௔ to ߩ଴ is obtained. It is given by 
 

ߤ =  ఘೌ
ఘబ

=   ቀ1−  ௞௔
మ

ଷோమ
ቁ  ቀ1−  ௞௔

మ

ோమ
ቁ

(ିଶ)
                                4.2 

 
It is not difficult to see that <1. The equation 4.2 represents 
a2/R2 in terms of  and k as 
 
௔మ

ோమ
=  ൣ଺ఓିଵିඥଵାଶସఓ൧

଺௞ఓ
             4.3 

 
In order to have some more information about the model, a 
numerical study of various parameters occurring in our 
solution is discussed. Using the scheme outlined above, the 
matter density is taken as ߩ௔ = 2 × 10ଵସ݃. ܿ݉ିଷ on the 
boundary r = a of the sphere. Different values of the ratio 
ߤ =  ఘೌ

ఘబ
 are chosen and ρ0 is computed for each the assumed 

value of ρa and selected value of ߤ. If a specific value is 
assigned to the constant , then ݇ =  −1−  ඥ1 +   gives ߚ 
k. =0.21 is taken so that k is negative and taken as –2.1. 
The equation 3.8 provides R. An estimate of the radius of 
the sphere (a) is given by equation 4.3. The equations 3.17, 
3.18 and 3.19 give the values of m, B and A respectively. 
Equation 3.17 gives the mass (m) in kgs. The mass M of the 
body in gm is obtained from M=mc2/G. The values f(A, B) 
and g(A, B) can be obtained from 2.10 and 3.12. Table 2 
shows the results for the various values of . 
 
Table 2 indicates that a, a/R and m are decreasing functions 
of . R and A are increasing functions of  while B is a 
decreasing function of . The physical requirements are 
(ܤ,ܣ)݂ ≥ 0 and ݃(ܤ,ܣ) ≥ 0 . From the table 2 it is clear 
that these requirements are satisfied for 0.55 ≤ > ߤ  1. For 
this range the maximum radius is 16.95 km and maximum 
mass is 2.6132M0. Here M0 is the solar mass given M0 = 
1.475 km. Therefore, the model permits densities of the 
order 2x1014g.cm–3, masses around three times the solar 
mass and radii of the order of few kilometers. Although the 
numerical calculations are performed for =0.21, the 
method is quite general and can be used for any real value of 
. 
 
From the results 3.5 and 3.6 it is clear that an explicit 
relation between the density ρ and the radial pressure pr 
cannot be obtained. Such a relation is discussed numerically. 
Let us fix k and a/R as k =  –2.1 and a/R= (0.5). This value 
of a/R is admissible. The constant A and B can be calculated 
from 3.18 and 3.19. For various values of r/R lying between 
0 and 0.5, the values of ρR2 and prR2

  are tabulated as 
follows: 
 
 
 

Table -1: Density and pressure values in the interior of the 
sphere 

r/R ρR2 prR2 

0.04 9.248 2.160 
0.08 9.000 2.000 
0.12 8.850 1.980 
0.16 8.520 1.820 
0.20 8.136 1.640 
0.24 7.690 1.430 
0.28 7.230 1.210 
0.32 6.750 0.980 
0.6 6.260 0.751 

 
From the above table 1 it is clear that ρ–3pr > 0 for r/R lying 
between 0.04 and 0.36. With the help of table 1, the graph of 
ρR2 verses prR2 is plotted in Fig. 1. The graph shows the 
pressure –density relation in the interior of the sphere. 
 

 
Fig -1: Graph of the pressure –density relation in the interior 

of the sphere 
 
The conservation laws ௞ܶ;௜

௜ = 0  for the anisotropic fluid 
distribution is, 
 
ߩ) + ௥) ఊ݌

ᇲ

ଶ
= ௥ᇱ݌−  + ଶ

ோ
ୄ݌)  −   (௥݌ 

 
These rules for isotropic fluid distribution provide 
 
ߩ) + ௥) ఊ݌

ᇲ

ଶ
= ௥ᇱ݌−    

 
By examining these equations, a supplementary term  
[2/r]( ୄ݌ −   ௥) represents “force” as a result of anisotropic݌ 
nature  of the fluid. When  ୄ݌ >  ௥ the force is directed݌ 
outwards and for  ୄ݌ <  ௥ it is inwards. Compared to݌
isotropic fluid, use of an anisotropic fluid permits 
construction of largely compact distributions, as the 
repellant force exists in the outward directed force.     
 
Here, the physical condition ௗ௣ೝ

ௗఘ
< 1 at the centre and at the 

boundary is, 
 

ቀௗ௣ೝ
ௗఘ
ቁ
௥ୀ଴

=  
଼ గ ൫ఘబା ௣ೝబ൯ ோమ ൜஺ ቀభశೖభషೖቁା య ಳ ೖ

(భషೖ)య/మൠ

ସ௞ቄಲయ(ଷି௞)ା ಳ
√భషೖ

ቅ
 +  ఉ

ଶ௞(ଵି௞)
  

 
and 
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ቀௗ௣ೝ
ௗఘ
ቁ
௥ୀ௔

=

 
଼ గ ఘೌ൬ଵି ೖೌ

మ

ೃమ
൰
మ

  ೃ
మ

೥ೌ
   ൝஺ ቀଵି మೖೖషభ௭ೌ

మቁ ି య ಳ ೖ
ೖషభ ௭ೌ ൬ଵି ೖ೥ೌ

మ

ೖషభ൰
భ/మ

ൡ

ସ௞(ଵି௞)ቊ஺ ௭ೌ ቀଵି మೖ
య(ೖషభ) ௭ೌమቁା ஻ ቀଵି ೖ

ೖషభ௭ೌ
మቁ
య/మ

ቋ
 +

 
ఉ൬ଵି ೖೌ

మ

ೃమ
൰

ଶ௞(ଵି௞)
  

 
Where, ݖ௔ଶ = 1− (ܽଶ/ܴଶ) . 
 
For the various values of  lying between 0.55 and 0.9, the 
values of ቀௗ௣ೝ

ௗఘ
ቁ
௥ୀ଴

 and ቀௗ௣ೝ
ௗఘ
ቁ
௥ୀ௔

 are mentioned in the table 

2.  
 

Table -2: Values of ቀௗ௣ೝ
ௗఘ
ቁ
௥ୀ଴

 and ቀௗ௣ೝ
ௗఘ
ቁ
௥ୀ௔

 for different 

values of  
 ൬

௥݌݀
ߩ݀

൰
௥ୀ଴

 ൬
௥݌݀
ߩ݀

൰
௥ୀ௔

 

0.9000 0.71696 0.69999 
0.8500 0.78145 0.76799 
0.8000 0.67505 0.70726 
0.7500 0.72501 0.76885 
0.7000 0.75870 0.82165 
0.6500 0.86167 0.93724 
0.6000 0.96304 1.05669 
0.5500 1.10602 1.21521 

 
From the table 2 it is clear that ௗ௣ೝ

ௗఘ
 at the centre and at the 

boundary remains less than one for range 0.65 ≤ ߤ ≤ 0.9. 
Therefore the range of validity of the solution is 0.65 ≤ ߤ ≤
0.9. 
 
Now the effect of anisotropy on the surface red-shift is 
discussed. The red-shift is given by               
                       

ݖ =  ൬1−  
2݉
ܽ
൰

(ିଵ/ଶ)

− 1 
 
where,  a is the boundary radius. 
 
For isotropic case z is represented by zi and for anisotropic 
case z is represented by za . For various values of  lying 
between 0.55 and 0.9, zi and za are tabulated below.  
 

Table -3: Various values of for  for zi and za 
 zi za 

0.9000 0.04723 0.04877 
0.8500 0.07468 0.07708 
0.8000 0.10549 0.10880 
0.7500 0.14017 0.14454    
0.7000 0.17978 0.18520 
0.6500 0.22567 0.23248 
0.6000 0.27945 0.28772 
0.5500 0.34407 0.35403 

 

Table 3 shows that za is always greater than zi. Therefore, 
the introduction of anisotropy parameter in pressure 
increases in surface red-shift. 
 
5. CONCLUSION 
In this paper exact solution of Einstein field equations which 
describes the interior field of an anisotropic fluid sphere is 
derived. The solution satisfies reasonable physical 
conditions. The differential equation 3.3 can also admit 
exact solution for different choices of . For example, the 
solution of 3.3 in which =k(k–1) is obtained. The details of 
this solution can be discussed on similar lines.  
 
 A system of equations 2.6 – 2.8 by making a specific choice 
of the pressure anisotropy function S is solved. But this 
system of equations can also be solved by making a 
particular choice of the radial pressure pr. One possible 
choice of pr is  
 

௥݌ߨ8 = (ݎ)݂ ቀ1−  ௥
మ

௔మ
ቁ
௡

  
 
where f is an arbitrary function of r, a is the boundary radius 
and n is any natural number. Here the radial pressure 
disappears at the boundary. So, one of the boundary 
conditions is already satisfied. 
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