IEICE Transactions on Communications
Online ISSN : 1745-1345
Print ISSN : 0916-8516
Special Section on 5G Radio Access Networks - Part II: Multi-RAT Heterogeneous Networks and Smart Radio Technologies
Millimeter-Wave Wireless LAN and Its Extension toward 5G Heterogeneous Networks
Kei SAKAGUCHIEhab Mahmoud MOHAMEDHideyuki KUSANOMakoto MIZUKAMIShinichi MIYAMOTORoya E. REZAGAHKoji TAKINAMIKazuaki TAKAHASHINaganori SHIRAKATAHailan PENGToshiaki YAMAMOTOShinobu NANBA
Author information
JOURNAL FREE ACCESS

2015 Volume E98.B Issue 10 Pages 1932-1948

Details
Abstract

Millimeter-wave (mmw) frequency bands, especially 60GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is distributed antenna type architecture to realize centralized coordination, while the other is autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.

Content from these authors
© 2015 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top