IEICE Transactions on Electronics
Online ISSN : 1745-1353
Print ISSN : 0916-8524
Regular Section
Compact and Athermal DQPSK Demodulator with Silica-Based Planar Lightwave Circuit
Yusuke NASUYohei SAKAMAKIKuninori HATTORIShin KAMEIToshikazu HASHIMOTOTakashi SAIDAHiroshi TAKAHASHIYasuyuki INOUE
Author information
JOURNAL RESTRICTED ACCESS

2010 Volume E93.C Issue 7 Pages 1191-1198

Details
Abstract

We present a full description of a polarization-independent athermal differential quadrature phase shift keying (DQPSK) demodulator that employs silica-based planar lightwave circuit (PLC) technology. Silica-based PLC DQPSK demodulator has good characteristics including low polarization dependence, mass producibility, etc. However delay line interferometer (DLI) of demodulator had the large temperature dependence of its optical characteristics, so it required large power consumption to stabilize the chip temperature by the thermo-electric cooler (TEC). We previously made a quick report about an athermal DLI to reduce a power consumption by removing the TEC. In this paper, we focus on the details of the design and the fabrication method we used to achieve the athermal characteristics, and we describe the thermal stability of the signal demodulation and the reliability of our demodulator. We described two athermalization methods; the athermalization of the transmission spectrum and the athermalization of the polarization property. These methods were successfully demonstrated with keeping a high extinction ratio and a small footprint by introducing a novel interwoven DLI configuration. This configuration can also limit the degradation of the polarization dependent phase shift (PDf) to less than 1/10 that with the conventional configuration when the phase shifters on the waveguide are driven. We used our demodulator and examined its demodulation performance for a 43Gbit/s DQPSK signal. We also verified its long-term reliability and thermal stability against the rapid temperature change. As a result, we confirmed that our athermal demodulator performed sufficiently well for use in DQPSK systems.

Content from these authors
© 2010 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top