Skip to content
1887
Volume 64, Issue 4
  • ISSN: 2056-5135

Abstract

Generation of artificial metalloenzymes (ArMs) has gained much inspiration from the general understanding of natural metalloenzymes. Over the last decade, a multitude of methods generating transition metal-protein hybrids have been developed and many of these new-to-nature constructs catalyse reactions previously reserved for the realm of synthetic chemistry. This perspective will focus on ArMs incorporating 4d and 5d transition metals. It aims to summarise the significant advances made to date and asks whether there are chemical strategies, used in nature to optimise metal catalysts, that have yet to be fully recognised in the synthetic enzyme world, particularly whether artificial enzymes produced to date fully take advantage of the structural and energetic context provided by the protein. Further, the argument is put forward that, based on precedence, in the majority of naturally evolved metalloenzymes the direct coordination bonding between the metal and the protein scaffold is integral to catalysis. Therefore, the protein can attenuate metal activity by positioning ligand atoms in the form of amino acids, as well as making non-covalent contributions to catalysis, through intermolecular interactions that pre-organise substrates and stabilise transition states. This highlights the often neglected but crucial element of natural systems that is the energetic contribution towards activating metal centres through protein fold energy. Finally, general principles needed for a different approach to the formation of ArMs are set out, utilising direct coordination inspired by the activation of an organometallic cofactor upon protein binding. This methodology, observed in nature, delivers true interdependence between metal and protein. When combined with the ability to efficiently evolve enzymes, new problems in catalysis could be addressed in a faster and more specific manner than with simpler small molecule catalysts.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15928204097766
2020-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/64/4/Barker_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15928204097766&mimeType=html&fmt=ahah

References

  1. Winter G., Fersht A. R., Wilkinson A. J., Zoller M., and Smith M. Nature, 1982, 299, (5885), 756 LINK https://doi.org/10.1038/299756a0 [Google Scholar]
  2. Fersht A. R., Shi J-P., Knill-Jones J., Lowe D. M., Wilkinson A. J., Blow D. M., Brick P., Carter P., Waye M. M. Y., and Winter G. Nature, 1985, 314, (6008), 235 LINK https://doi.org/10.1038/314235a0 [Google Scholar]
  3. Schwizer F., Okamoto Y., Heinisch T., Gu Y., Pellizzoni M. M., Lebrun V., Reuter R., Köhler V., Lewis J. C., and Ward T. R. Chem. Rev., 2018, 118, (1), 142 LINK https://doi.org/10.1021/acs.chemrev.7b00014 [Google Scholar]
  4. Jeschek M., Panke S., and Ward T. R. Trends Biotechnol., 2018, 36, (1), 60 LINK https://doi.org/10.1016/j.tibtech.2017.10.003 [Google Scholar]
  5. Rebelein J. G., and Ward T. R. Curr. Opin. Biotechnol., 2018, 53, 106 LINK https://doi.org/10.1016/j.copbio.2017.12.008 [Google Scholar]
  6. Tyzack J. D., Ribeiro A. J. M., Borkakoti N., and Thornton J. M. ACS Synth. Biol., 2019, 8, (11), 2494 LINK https://doi.org/10.1021/acssynbio.9b00105 [Google Scholar]
  7. Bhushan A., Egli P. J., Peters E. E., Freeman M. F., and Piel J. Nat. Chem., 2019, 11, (10), 931 LINK https://doi.org/10.1038/s41557-019-0323-9 [Google Scholar]
  8. Wilson M. C., Mori T., Rückert C., Uria A. R., Helf M. J., Takada K., Gernert C., Steffens U. A. E., Heycke N., Schmitt S., Rinke C., Helfrich E. J. N., Brachmann A. O., Gurgui C., Wakimoto T., Kracht M., Crüsemann M., Hentschel U., Abe I., Matsunaga S., Kalinowski J., Takeyama H., and Piel J. Nature, 2014, 506, (7486), 58 LINK https://doi.org/10.1038/nature12959 [Google Scholar]
  9. Casini A., Chang F. Y., Eluere R., King A. M., Young E. M., Dudley Q. M., Karim A., Pratt K., Bristol C., Forget A., Ghodasara A., Warden-Rothman R., Gan R., Cristofaro A., Borujeni A. E., Ryu M.-H., Li J., Kwon Y.-C., Wang H., Tatsis E., Rodriguez-Lopez C., O’Connor S., Medema M. H., Fischbach M. A., Jewett M. C., Voigt C., and Gordon D. B. J. Am. Chem. Soc., 2018, 140, (12), 4302 LINK https://doi.org/10.1021/jacs.7b13292 [Google Scholar]
  10. DeGrado W. F., Summa C. M., Pavone V., Nastri F., and Lombardi A. Annu. Rev. Biochem., 1999, 68, 779 LINK https://doi.org/10.1146/annurev.biochem.68.1.779 [Google Scholar]
  11. Falivene L., Cao Z., Petta A., Serra L., Poater A., Oliva R., Scarano V., and Cavallo L. Nat. Chem., 2019, 11, (10), 872 LINK https://doi.org/10.1038/s41557-019-0319-5 [Google Scholar]
  12. Alonso-Cotchico L., Rodríguez-Guerra J., Lledós A., and Maréchal J.-D. Acc. Chem. Res., 2020, 53, (4), 896 LINK https://doi.org/10.1021/acs.accounts.0c00031 [Google Scholar]
  13. Drienovská I., Alonso-Cotchico L., Vidossich P., Lledós A., Maréchal J.-D., and Roelfes G. Chem. Sci., 2017, 8, (10), 7228 LINK https://doi.org/10.1039/C7SC03477F [Google Scholar]
  14. Alonso-Cotchico L., Sciortino G., Vidossich P., Rodríguez-Guerra Pedregal J., Drienovská I., Roelfes G., Lledós A., and Maréchal J.-D. ACS Catal., 2019, 9, (5), 4616 LINK https://doi.org/10.1021/acscatal.8b04919 [Google Scholar]
  15. Feng H., Guo X., Zhang H., Chen L., Yin P., Chen C., Duan X., Zhang X., and Wei M. Phys. Chem. Chem. Phys., 2019, 21, (42), 23408 LINK https://doi.org/10.1039/C9CP04473F [Google Scholar]
  16. Leveson-Gower R. B., Mayer C., and Roelfes G. Nat. Rev. Chem., 2019, 3, (12) 687 LINK https://doi.org/10.1038/s41570-019-0143-x [Google Scholar]
  17. Jeschek M., Reuter R., Heinisch T., Trindler C., Klehr J., Panke S., and Ward T. R. Nature, 2016, 537, (7622), 661 LINK https://doi.org/10.1038/nature19114 [Google Scholar]
  18. Hagen W. R. Metallomics, 2019, 11, (11), 1768 LINK https://doi.org/10.1039/C9MT00208A [Google Scholar]
  19. Vallee B. L., and Williams R. J. Proc. Natl. Acad. Sci., 1968, 59, (2), 498 LINK https://doi.org/10.1073/pnas.59.2.498 [Google Scholar]
  20. Drennan C. L., Huang S., Drummond J. T., Matthews R. G., and Lidwig M. L. Science, 1994, 266, (5191), 1669 LINK https://doi.org/10.1126/science.7992050 [Google Scholar]
  21. Ludwig M. L., Drennan C. L., and Matthews R. G. Structure, 1996, 4, (5), 505 LINK https://doi.org/10.1016/S0969-2126(96)00056-1 [Google Scholar]
  22. Banerjee R., and Ragsdale S. W. Annu. Rev. Biochem., 2003, 72, 209 LINK https://doi.org/10.1146/annurev.biochem.72.121801.161828 [Google Scholar]
  23. Reetz M. T. Acc. Chem. Res., 2019, 52, (2), 336 LINK https://doi.org/10.1021/acs.accounts.8b00582 [Google Scholar]
  24. Zhao J., Rebelein J. G., Mallin H., Trindler C., Pellizzoni M. M., and Ward T. R. J. Am. Chem. Soc., 2018, 140, (41), 13171 LINK https://doi.org/10.1021/jacs.8b07189 [Google Scholar]
  25. Dydio P., Key H. M., Nazarenko A., Rha J. Y.-E., Seyedkazemi V., Clark D. S., and Hartwig J. F. Science, 2016, 354, (6308), 102 LINK https://doi.org/10.1126/science.aah4427 [Google Scholar]
  26. Studer S., Hansen D. A., Pianowski Z. L., Mittl P. R. E., Debon A., Guffy S. L., Der B. S., Kuhlman B., and Hilvert D. Science, 2018, 362, (6420), 1285 LINK https://doi.org/10.1126/science.aau3744 [Google Scholar]
  27. Coelho P. S., Brustad E. M., Kannan A., and Arnold F. H. Science, 2013, 339, (6117), 307 LINK https://doi.org/10.1126/science.1231434 [Google Scholar]
  28. Arnold F. H. Acc. Chem. Res., 1998, 31, (3), 125 LINK https://doi.org/10.1021/ar960017f [Google Scholar]
  29. Arnold F. H. Angew. Chem., Int. Ed., 2018, 57, (16), 4143 LINK https://doi.org/10.1002/anie.201708408 [Google Scholar]
  30. Coleman J. E. Nature, 1967, 214, (5084), 193 LINK https://doi.org/10.1038/214193a0 [Google Scholar]
  31. Jing Q., Okrasa K., and Kazlauskas R. J. Chem. Eur. J., 2009, 15, (6), 1370 LINK https://doi.org/10.1002/chem.200801673 [Google Scholar]
  32. Jing Q., and Kazlauskas R. J. ChemCatChem, 2010, 2, (8), 953 LINK https://doi.org/10.1002/cctc.201000159 [Google Scholar]
  33. Key H. M., Dydio P., Clark D. S., and Hartwig J. F. Nature, 2016, 534, (7608), 534 LINK https://doi.org/10.1038/nature17968 [Google Scholar]
  34. Wilson M. E., and Whitesides G. M. J. Am. Chem. Soc., 1978, 100, (1) 306 LINK https://doi.org/10.1021/ja00469a064 [Google Scholar]
  35. Heinisch T., Schwizer F., Garabedian B., Csibra E., Jeschek M., Vallapurackal J., Pinheiro V. B., Marlière P., Panke S., and Ward T. R. Chem. Sci., 2018, 9, (24), 5383 LINK https://doi.org/10.1039/c8sc00484f [Google Scholar]
  36. Liang A. D., Serrano-Plana J., Peterson R. L., and Ward T. R. Acc. Chem. Res., 2019, 52, (3), 585 LINK https://doi.org/10.1021/acs.accounts.8b00618 [Google Scholar]
  37. Eda S., Nasibullin I., Vong K., Kudo N., Yoshida M., Kurbangalieva A., and Tanaka K. Nat. Catal., 2019, 2, (9), 780 LINK https://doi.org/10.1038/s41929-019-0317-4 [Google Scholar]
  38. Raines D. J., Clarke J. E., Blagova E. V., Dodson E. J., Wilson K. S., and Duhme-Klair A.-K. Nat. Catal., 2018, 1, (9), 680 LINK https://doi.org/10.1038/s41929-018-0124-3 [Google Scholar]
  39. deGruyter J. N., Malins L. R., and Baran P. S. Biochemistry, 2017, 56, (30), 3863 LINK https://doi.org/10.1021/acs.biochem.7b00536 [Google Scholar]
  40. Hoyt E. A., Cal P. M. S. D., Oliveira B. L., and Bernardes G. J. L. Nat. Rev. Chem., 2019, 3, (3) 147 LINK https://doi.org/10.1038/s41570-019-0079-1 [Google Scholar]
  41. Haquette P., Talbi B., Canaguier S., Dagorne S., Fosse C., Martel A., Jaouen G., and Salmain M. Tetrahedron Lett., 2008, 49, (31), 4670 LINK https://doi.org/10.1016/j.tetlet.2008.05.043 [Google Scholar]
  42. Haquette P., Salmain M., Svedlung K., Martel A., Rudolf B., Zakrzewski J., Cordier S., Roisnel T., Fosse C., and Jaouen G. ChemBioChem, 2007, 8, (2), 224 LINK https://doi.org/10.1002/cbic.200600387 [Google Scholar]
  43. Madern N., Queyriaux N., Chevalley A., Ghasemi M., Nicolotti O., Ciofini I., Mangiatordi G. F., and Salmain M. J. Mol. Catal. B: Enzym., 2015, 122, 314 LINK https://doi.org/10.1016/j.molcatb.2015.10.007 [Google Scholar]
  44. Noren C. J., Anthony-Cahill S. J., Griffith M. C., and Schultz P. G. Science, 1989, 244, (4901), 182 LINK https://doi.org/10.1126/science.2649980 [Google Scholar]
  45. Lewis J. C. Curr. Opin. Chem. Biol., 2015, 25, 27 LINK https://doi.org/10.1016/j.cbpa.2014.12.016 [Google Scholar]
  46. Yang H., Srivastava P., Zhang C., and Lewis J. C. ChemBioChem, 2014, 15, (2), 223 LINK https://doi.org/10.1002/cbic.201300661 [Google Scholar]
  47. Srivastava P., Yang H., Ellis-Guardiola K., and Lewis J. C. Nat. Commun., 2015, 6, (1), 7789 LINK https://doi.org/10.1038/ncomms8789 [Google Scholar]
  48. Lombardi A., Pirro F., Maglio O., Chino M., and DeGrado W. F. Acc. Chem. Res., 2019, 52, (5), 1148 LINK https://doi.org/10.1021/acs.accounts.8b00674 [Google Scholar]
  49. Handel T., and DeGrado W. F. J. Am. Chem. Soc., 1990, 112, (18), 6710 LINK https://doi.org/10.1021/ja00174a039 [Google Scholar]
  50. Drienovská I., Rioz-Martínez A., Draksharapu A., and Roelfes G. Chem. Sci., 2015, 6, (1), 770 LINK https://doi.org/10.1039/C4SC01525H [Google Scholar]
  51. Ségaud N., Drienovská I., Chen J., Browne W. R., and Roelfes G. Inorg. Chem., 2017, 56, (21), 13293 LINK https://doi.org/10.1021/acs.inorgchem.7b02073 [Google Scholar]
  52. Bersellini M., and Roelfes G. Org. Biomol. Chem., 2017, 15, (14), 3069 LINK https://doi.org/10.1039/C7OB00390K [Google Scholar]
  53. Wang Q., Parrish A. R., and Wang L. Chem. Biol., 2009, 16, (3), 323 LINK https://doi.org/10.1016/j.chembiol.2009.03.001 [Google Scholar]
  54. Mayer C., Dulson C., Reddem E., Thunnissen A.-M. W. H., and Roelfes G. Angew. Chem. Int. Ed., 2019, 58, (7), 2083 LINK https://doi.org/10.1002/anie.201813499 [Google Scholar]
  55. Fallah-Araghi A., Baret J.-C., Ryckelynck M., and Griffiths A. D. Lab Chip, 2012, 12, (5), 882 LINK https://doi.org/10.1039/C2LC21035E [Google Scholar]
  56. Podtetenieff J., Taglieber A., Bill E., Reijerse E. J., and Reetz M. T. Angew. Chem. Int. Ed., 2010, 49, (30), 5151 LINK https://doi.org/10.1002/anie.201002106 [Google Scholar]
  57. de Jesús Cázares-Marinero J., Przybylski C., and Salmain M. Eur. J. Inorg. Chem., 2018, (12), 1383 LINK https://doi.org/10.1002/ejic.201701359 [Google Scholar]
  58. Scrase T. G., O’Neill M. J., Peel A. J., Senior P. W., Matthews P. D., Shi H., Boss S. R., and Barker P. D. Inorg. Chem., 2015, 54, (7), 3118 LINK https://doi.org/10.1021/ic502051y [Google Scholar]
  59. Biggs G. S., O’Neill M. J., Carames Mendez P., Scrase T. G., Lin Y., Bin-Maarof A. M., Bond A. D., Boss S. R., and Barker P. D. Dalton Trans., 2019, 48, (20), 6910 LINK https://doi.org/10.1039/c8dt05159c [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651320X15928204097766
Loading
/content/journals/10.1595/205651320X15928204097766
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error