Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-12T17:36:58.028Z Has data issue: false hasContentIssue false

Influence of Dicamba and Dicamba plus Glyphosate Combinations on the Control of Glyphosate-Resistant Waterhemp (Amaranthus rudis)

Published online by Cambridge University Press:  20 January 2017

Douglas J. Spaunhorst
Affiliation:
Division of Plant Sciences, 5 Waters Hall, University of Missouri, Columbia, MO 65211
Kevin W. Bradley*
Affiliation:
Division of Plant Sciences, University of Missouri, Columbia, MO 65211
*
Corresponding author's E-mail: BradleyKe@missouri.edu

Abstract

A total of four field experiments were conducted over a 2-yr period (2011 and 2012) near Mokane and Moberly, Missouri, to determine the control of glyphosate-resistant (GR) waterhemp with dicamba and glyphosate applied alone or as a tank-mix combination. In one experiment, dicamba was applied at 0.14, 0.28, 0.42, and 0.56 kg ae ha−1 with or without 0.86 kg ae ha−1 glyphosate to GR waterhemp plants 7.5, 15, and 30 cm in height. In a second experiment, sequential treatments of dicamba or dicamba plus glyphosate were applied 4, 7, and 14 d after the initial herbicide treatment to plants measuring either 7.5 or 23 cm in height. Control of GR waterhemp ranged from 7 to 62%, 11 to 40%, and 8 to 30% when applied to 7.5-, 15-, and 30-cm plants, respectively. Control of 7.5-cm GR waterhemp increased by 16 to 36%, and biomass reduction increased by 29 to 52% in response to 0.14, 0.28, 0.42, and 0.56 kg ha−1 dicamba plus glyphosate compared to these same rates of dicamba alone. When sequential dicamba-containing treatments were averaged across all treatments and application timings, GR waterhemp control ranged from 46 to 47%, and biomass reduction ranged from 55 to 66%. No differences in control were observed based on the timing of the sequential herbicide treatment. However, in terms of GR waterhemp biomass reduction, sequential treatments applied 4 d after the initial treatment reduced GR waterhemp biomass more than sequential treatments applied 14 d after the initial treatment. Results from these experiments indicate that, in the absence of crop competition, a single treatment of dicamba up to 0.56 kg ha−1 provides less than 62% control of GR waterhemp, and sequential dicamba plus glyphosate treatments targeting 7.5 cm plants are required to achieve at least 72% control.

Un total de cuatro experimentos de campo fueron realizados durante un período de 2 años (2011 y 2012) cerca de Mokane y Moberly, Missouri, para determinar el control de Amaranthus rudis resistente a glyphosate (GR) con dicamba y glyphosate aplicados solos o combinados en mezcla en tanque. En un experimento, se aplicó dicamba a 0.14, 0.28, 0.42, y 0.56 kg ae ha−1 con o sin 0.86 kg ae ha−1 de glyphosate a plantas de A. rudis GR de 7.5, 15, y 30 cm de altura. En un segundo experimento, se realizaron tratamientos de aplicaciones secuenciales de dicamba o dicamba más glyphosate 4, 7, y 14 d después del tratamiento inicial a plantas que midieron 7.5 ó 23 cm de altura. El control de A. rudis GR varió de 7 a 62%, 11 a 40%, y 8 a 31% cuando se aplicó plantas de 7.5, 15, y 30 cm de altura, respectivamente. El control de A. rudis GR de 7.5 cm de altura incrementó de 16 a 36%, y la reducción de la biomasa aumentó de 29 a 52% en respuesta a 0.14, 0.28, 0.42, y 0.56 kg ha−1 de dicamba más glyphosate al compararse con las mismas dosis de dicamba solo. Cuando se promedió los tratamientos secuenciales y los momentos de aplicaciones que contenían dicamba, el control de A. rudis GR varió entre 46 y 47%, y la reducción en la biomasa varió entre 55 y 66%. No se observaron diferencias según el momento del tratamiento secuencial con el herbicida. Sin embargo, en términos de la reducción de la biomasa de A. rudis GR, los tratamientos secuenciales aplicados 4 d después del tratamiento inicial redujeron la biomasa de A. rudis GR más que los tratamientos secuenciales aplicados 14 d después del tratamiento inicial. Los resultados de estos experimentos indican que, en ausencia de competencia del cultivo, un solo tratamiento de dicamba de hasta 0.56 kg ha−1 brinda menos de 62% de control de A. rudis GR, y que se requieren tratamientos secuenciales de dicamba más glyphosate dirigidos a plantas de 7.5 cm de altura para alcanzar al menos 72% de control.

Type
Weed Management—Major Crops
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous. 2013. Clarity® herbicide product label. EPA Reg. No. 7969-137. Research Triangle Park, NC BASF Corporation. Pp. 1021.Google Scholar
Behrens, M. R., Mutlu, N., Chakraborty, S., Dumitru, R., Jiang, W., LaVallee, B. J., Herman, P. L., Clemente, T. E., and Weeks, D. P. 2007. Dicamba resistance: enlarging and preserving biotechnology-based weed management strategies. Science. 316:11851188.Google Scholar
Bernards, M. L., Crespo, R. J., Kruger, G. R., Gaussoin, R., and Tranel, P. J. 2012. A waterhemp (Amaranthus tuberculatus) population resistant to 2,4D. Weed Sci. 60:379384.Google Scholar
Blouin, D. C., Webster, E. P., and Bond, J. A. 2011. On the analysis of combined experiments. Weed Technol. 25:165169.CrossRefGoogle Scholar
Boydston, R. A. 1990. Soil water content affects the activity of four herbicides on green foxtail (Setaria viridis). Weed Sci. 38:578582.CrossRefGoogle Scholar
Boydston, R. A. 1992. Drought stress reduces fluazifop-P activity on green foxtail (Setaria viridis). Weed Sci. 40:2024.CrossRefGoogle Scholar
Bradley, K. W., Monnig, N. H., Legleiter, T. R., and Wait, J. D. 2007. Influence of glyphosate tank-mix combinations and application timings on weed control and yield in glyphosate-resistant soybean. Crop Manage. DOI: CrossRefGoogle Scholar
Bryson, C. T. and DeFelice, M. S. 2009. Weeds of the South. Athens University of Georgia. Pp. 3753.Google Scholar
Cao, M., Sato, S. J., Behrens, M., Jiang, W. Z., Clemente, T. E., and Weeks, D. P. 2011. Genetic engineering of maize (Zea mays) for high-level tolerance to treatment with the herbicide dicamba. J. Agric. Food Chem. 59:58305834.CrossRefGoogle ScholarPubMed
Carmer, S. G., Nyuist, W. E., and Walker, W. M. 1989. Least significant differences for combined analysis of experiments with two of three-factor treatment designs. Agron. J. 81:655672.Google Scholar
Cordes, J. C., Johnson, W. G., Scharf, P., and Smeda, R. J. 2004. Late-emerging common waterhemp (Amaranthus rudis) interference in conventional tillage corn. Weed Technol. 18:9991005.CrossRefGoogle Scholar
Craigmyle, B. D., Ellis, J. M., and Bradley, K. W. 2013a. Influence of herbicide programs on weed management in soybean with resistance to glufosinate and 2,4-D. Weed Technol. 27:7884.Google Scholar
Craigmyle, B. D., Ellis, J. M., and Bradley, K. W. 2013b. Influence of weed height and glufosinate plus 2,4-D combinations on weed control in soybean with resistance to 2,4D. Weed Technol. In press.Google Scholar
Falk, J. S., Shoup, D. E., Al-Khatib, K., and Peterson, D. E. 2006. Protox-resistant common waterhemp (Amaranthus rudis) response to herbicides applied at different growth stages. Weed Sci. 54:793799.CrossRefGoogle Scholar
Hager, A. G., Wax, L. M., Bollero, G. A., and Stoller, E. W. 2003. Influence of diphenyl ether herbicide application rate and timing on common waterhemp (Amaranthus rudis) control in soybean (Glycine max). Weed Technol. 17:1420.CrossRefGoogle Scholar
Hager, A. G., Wax, L. M., Stoller, E. W., and Bollero, G. A. 2002. Common waterhemp (Amaranthus rudis) interference in soybean. Weed Sci. 50:607610.CrossRefGoogle Scholar
Hartzler, R. G., Battles, B. A., and Nordby, D. 2004. Effect of common waterhemp (Amaranthus rudis) emergence date on growth and fecundity in soybean. Weed Sci. 52:242245.CrossRefGoogle Scholar
Hillger, D. E., Schultz, M. E., Ruen, D. C., Maddy, B. E., Culpepper, A. S., Loux, M. M., and Young, B. G. 2009. Effect of weed size on control of weeds with 2,4-D + glyphosate tank mixes in corn. Proc. North Cent. Weed Sci. Soc. 64:121.Google Scholar
Horak, M. J. and Loughin, T. M. 2000. Growth analysis of four Amaranthus species. Weed Sci. 48:347355.Google Scholar
Jannink, J. L., Orf, J. H., Jordan, N. R., and Shaw, R. G. 2000. Index selection for weed suppressive ability in soybean. Crop Sci. 40:10871094.Google Scholar
Johnson, W. G., Young, B., Matthews, J., Marquardt, P., Slack, C., Bradley, K., York, A., Culpepper, S., Hager, A., Al-Khatib, K., Steckel, L., Moechnig, M., Loux, M., Bernards, M., and Smeda, R. 2010. Weed control in dicamba-resistant soybeans. Crop Manage. DOI: CrossRefGoogle Scholar
Legleiter, T. R. and Bradley, K. W. 2008. Glyphosate and multiple herbicide resistance in common waterhemp (Amaranthus rudis) populations from Missouri. Weed Sci. 56:582587.Google Scholar
Legleiter, T. R. and Bradley, K. W. 2009. Evaluation of herbicide programs for the management of glyphosate-resistant waterhemp (Amaranthus rudis) in maize. Crop Protection. 28:917922.Google Scholar
Legleiter, T. R., Bradley, K. W., and Massey, R. E. 2009. Glyphosate-resistant waterhemp (Amaranthus rudis) control and economic returns with herbicide programs in soybean. Weed Technol. 23:5461.CrossRefGoogle Scholar
Loux, M., Doohan, D., Dobbles, A. F., Johnson, W. G., Nice, G.R.W., Jordan, T. N., and Bauman, T. T. 2010. Weed control guide for Ohio and Indiana. Joint publication. Columbus, OH: Ohio State Univ. Coop. Ext. Bul. 789 and Lafayette, West IN: Purdue Univ. Coop. Pub. WS16. National Climatic Data Center. 2012. http://www.ncdc.noaa.gov/. Accessed February 1, 2012.Google Scholar
Nordby, D., Hartzler, B., and Bradley, K. 2007. The glyphosate, weeds, and crops series. Biology and management of waterhemp. (GWC-13).University of Purdue Extension.Google Scholar
Norsworthy, J. K. and Shipe, E. 2006. Evaluation of glyphosate-resistant Glycine max genotypes for competitiveness at recommended seeding rates in wide and narrow rows. Crop Prot. 25:362368.CrossRefGoogle Scholar
Owen, L. N., Mueller, T. C., Main, C. L., Bond, J., and Steckel, L. E. 2011. Evaluating rates and application timings of saflufenacil for control of glyphosate-resistant horseweed (Conyza canadensis) prior to planting no-till cotton. Weed Technol. 25:15.Google Scholar
Robinson, A. P., Simpson, D. M., and Johnson, W. G. 2012. Summer annual weed control with 2,4-D and glyphosate. Weed Technol. 26:657660.CrossRefGoogle Scholar
Rose, S. J., Burnside, O. C., Specht, J. E., and Swisher, B. A. 1984. Competition and allelopathy between soybeans and weeds. Agron. J. 76:523528.Google Scholar
Ruiter, H. D. and Meinen, E. 1998. Influence of water stress and surfactant on the efficacy, absorption, and translocation of glyphosate. Weed Sci. 46:289296.CrossRefGoogle Scholar
Shaw, D. R. and Arnold, J. C. 2002. Weed control from herbicide combinations with glyphosate. Weed Technol. 16:16.Google Scholar
Shoup, D. E. and Al-Khatib, K. 2004. Control of protoporphyrinogen oxidase inhibitor-resistant common waterhemp (Amaranthus rudis) in corn and soybean. Weed Technol. 18:332340.CrossRefGoogle Scholar
Vink, J. P., Soltani, N., Robinson, D. E., Tardif, F. J., Lawton, M. B., and Sikkema, P. H. 2012. Glyphosate-resistant giant ragweed (Ambrosia trifida) control in dicamba-tolerant soybean. Weed Technol. 26:422428.CrossRefGoogle Scholar
Zimdahl, R. J. 1980. Weed–Crop Competition—A Review. Corvallis, OR International Plant Protection Center, Oregon State University. 195 p.Google Scholar