Skip to main content
Log in

Formation and properties of C-S-H–PEG nano-structures

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Results of an investigation of the intercalation potential of polyethylene glycol (PEG) with synthetic and pre-treated C-S-H are reported. The partial intercalation of PEG molecules in the interlayer of C-S-H is discussed. The effective and strong interaction of PEG molecules with the C-S-H surface was shown using XRD, 13C CP and 29Si MAS NMR, and DTGA. The position and character of the 002 low angle XRD peak of C-S-H are affected by drying procedures and concomitant chemical treatment preceding intercalation and the reaction temperature. Recovery of the initial 002 position after severe drying and intercalation with distilled water or PEG is incomplete but is accompanied by an increase in intensity. It is inferred that the stability of C-S-H binders in concrete can be impacted by a variation in nanostructure dependent on curing temperature and use of chemical admixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brown PW, Taylor HFW (2000) The role of ettringite in external sulfate attack. In: Marchand J, Skalny JP (eds) Materials science of concrete: special volume on sulfate attack mechanisms. American Ceramic Society, Westerville, p 73

    Google Scholar 

  2. Marchand J (2001) Modeling the behavior of unsaturated cement systems exposed to aggressive chemical environments. Mater Struct 34:195–200. doi:10.1007/BF02480588

    Article  Google Scholar 

  3. Taylor HFW, Famy C, Scrivener K (2001) Delayed ettringite formation. Cement Concr Res 31:683–693. doi:10.1016/S0008-8846(01)00466-5

    Article  Google Scholar 

  4. Litvan GG (1980) Volume stability of porous solids. Part I. In: Proceedings of the 7th international congress on chemistry of cement, Paris, France, vol 3, pp VII-46-VII-46-VII-50

  5. Raussell-Colom JA, Serraiosa MJ (1987) In: Newman ACD (ed) Chemistry of clays and clay minerals. Mineralogical Society, London, p 371

  6. Pinnavaia TJ (1983) Intercalated clay catalysts. Science 220(4595):365–371

    Article  Google Scholar 

  7. Okada A, Kawasumi M, Usuki AA, Kojima Y, Kurauchi T, Kamigaito O (1990) Synthesis and properties of nylon-6/clay hybrids. In: Schaefer DW, Mark JE (eds) Proceedings MRS symposium on polymer-based molecular composites, vol 171, pp 45–50

  8. Vaia RA, Price G, Ruth PN, Nguyen HT, Lichtenhan J (1999) Polymer/layered silicate nanocomposites as high performance ablative materials. Appl Clay Sci 15:67–92. doi:10.1016/S0169-1317(99)00013-7

    Article  Google Scholar 

  9. Biswas M, Sinha RS (2001) Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites. Adv Polym Sci 155:167–221. doi:10.1007/3-540-44473-4_3

    Article  Google Scholar 

  10. Sinha RS, Yamada K, Okamoto M, Ueda K (2002) New polylactide/layered silicate nanocomposite: a novel biodegradable material. Nano Lett 2:1093–1096. doi:10.1021/nl0202152

    Article  Google Scholar 

  11. Van Olphen H (1977) An introduction to clay and colloid chemistry. Wiley, New York, p 318

    Google Scholar 

  12. Tunney JJ, Detellier C (1993) Interlammellar covalent grafting of organic units on kaolinite. Chem Mater 5:747–748. doi:10.1021/cm00030a002

    Article  Google Scholar 

  13. Tunney JJ, Detellier C (1994) Preparation and characterization of an 8.4 Å hydrate kaolinite. Clays Clay Miner 42:552–560. doi:10.1346/CCMN.1994.0420506

    Article  Google Scholar 

  14. Velde B (1992) Introduction to clay minerals, 1st edn. Chapman and Hall, London, p 195

    Google Scholar 

  15. Dosch W (1966) Interlamellar reaction of tetracalcium aluminate hydrates with water and organic compounds. In: Proceedings of the 15th national conference on clay and clay minerals, Pittsburgh, PA, pp 273–292

  16. Terisse VH, Nonat A, Petit CJ (2001) Zeta potential study of calcium silicate hydrates interacting with alkaline cations. J Colloid Interface Sci 244:58–65. doi:10.1006/jcis.2001.7897

    Article  Google Scholar 

  17. Richardson GI (2004) Tobermorite/jennite and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement and blends of Portland cement with blast furnace slag, metakaolin or silica fume. Cement Concr Res 34:1733–1777. doi:10.1016/j.cemconres.2004.05.034

    Article  Google Scholar 

  18. Alizadeh R, Beaudoin JJ, Raki L (2007) C-S-H(I)—a nanostructural model for the removal of water from hydrated cement paste. J Am Ceram Soc 90:670–672. doi:10.1111/j.1551-2916.2006.01459.x

    Article  Google Scholar 

  19. Allen AJ, Thomas JJ, Jennings H (2007) Composition and density of nanoscale calcium-silicate-hydrate in cement. Nat Mater 6:311–316. doi:10.1038/nmat1871

    Article  Google Scholar 

  20. Feldman RF, Sereda PJ (1970) The new model for hydrated Portland cement and its practical implications. Engl J 53:53–57

    Google Scholar 

  21. Taylor HFW (1990) Cement chemistry. Academic Press, London, p 475

    Google Scholar 

  22. Hamid SA (1981) The crystal structure of the 11 Å tobermorite Ca2.25[Si3O7.5(OH)1.5] · 1H2O. Z Kristallogr 154:189–198

    Google Scholar 

  23. Feldman RF, Sereda PJ (1968) A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties. Materiaux Constr 1:509–520. doi:10.1007/BF02473639

    Article  Google Scholar 

  24. Beaudoin JJ (1999) Why engineers need materials science. Concr Int 21:86–89

    Google Scholar 

  25. Van Olphen H (1997) An introduction to clay colloid chemistry, 2nd edn. Wiley, New York, p 318

    Google Scholar 

  26. Mcbride MB (1994) Environmental chemistry of soils. Oxford University Press, Oxford, p 416

    Google Scholar 

  27. Velde B (1992) Introduction to clay minerals: chemistry, origins, uses and environmental significances, 1st edn. Chapman and Hall, London, p 195

    Google Scholar 

  28. Newman ACD (1987) Chemistry of clays and clay minerals. Monograph No. 6, Mineralogical Society, p 480

  29. Luckham PF, Rossi S (1999) The colloidal and rheological properties of bentonite suspensions. Adv Colloid Interface Sci 82:43–92. doi:10.1016/S0001-8686(99)00005-6

    Article  Google Scholar 

  30. Deuel H (1952) Organic derivatives of clay minerals. Clay Miner Bull 1:205–214. doi:10.1180/claymin.1952.001.7.04

    Article  Google Scholar 

  31. Deuel H (1959) Reaktionen von silikaten mit organischen verbindungen. Makromol Chem 34:206–215. doi:10.1002/macp.1959.020340113

    Article  Google Scholar 

  32. Evans B, White TE (1968) Adsorption and reaction of methylchlorosilane at an ‘Aerosil’ surface. J Catal 11:336–341. doi:10.1016/0021-9517(68)90056-0

    Article  Google Scholar 

  33. Yanagisawa T, Kuroda K, Kato C (1988) Organic derivatives of layered polysilicates I. Trimethylsilylation of magadite and kenyaite. React Solids 5:167–175. doi:10.1016/0168-7336(88)80085-8

    Article  Google Scholar 

  34. Vaia RA, Ishii H, Giannelis EP (1993) Synthesis and properties of two dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem Mater 5:1694–1696. doi:10.1021/cm00036a004

    Article  Google Scholar 

  35. Arnanda P, Ruitz-Hitzky E (1992) Poly(ethyleneoxide)-silicate intercalation materials. Chem Mater 4:1395–1413. doi:10.1021/cm00024a048

    Article  Google Scholar 

  36. Lagaly G, Fernadez M, Weiss A (1976) Problems in layers-charge determination of montmorillonite. Clays Clay Miner 50:435–445

    Google Scholar 

  37. Jaynes WF, Boyd SA (1991) Clay minerals type and organic compound sorption by hexadecyletrymethyl-ammonium exchanged clays. Soil Sci Soc Am J 55:43–48

    Google Scholar 

  38. MacEwen DMC (1984) Complexes of clays with organic compounds: 1. Complex formation between montmorillonite and halloysite and certain organic liquids. Trans Faraday Soc 44:349–367. doi:10.1039/tf9484400349

    Article  Google Scholar 

  39. Weiss A (1963) Organic derivatives of mica-type layer silicates. Angew Chem Int Ed Engl 2:134–144. doi:10.1002/anie.196301341

    Article  Google Scholar 

  40. Wang Z, Lan T, Pinnavaia J (1996) Hybrid organic-inorganic nanocomposites formed from an epoxy polymer and a layered silicic acid (magadrite). Chem Mater 8:2200–2204. doi:10.1021/cm960263l

    Article  Google Scholar 

  41. Sugahara Y, Sugimoto M, Yanagisawa T, Nomizu Y, Kuroda K, Kato CJ (1987) The preparation of magadite-polyacrylonitrite intercalation compound and its conversion to silicon carbide. J Ceram Soc Jpn 95:117–123

    Google Scholar 

  42. Wang Z, Lan T, Pinnavaia TJ (1998) Hybrid organic-inorganic nanocomposites: exfoliation of magadite nanolayers in an elastomeric epoxy polymer. Chem Mater 10:1820–1826. doi:10.1021/cm970784o

    Article  Google Scholar 

  43. Blumstein A (1965) Polymerization of adsorbed monolayers: II Thermal degradation of the inserted polymers. J Polym Sci A 3:2665–2673. doi:10.1002/pol.1965.100030721

    Google Scholar 

  44. Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8:1728–1734. doi:10.1021/cm960127g

    Article  Google Scholar 

  45. Sinha RS, Okamoto K, Okamoto M (2003) Structure property relationship in biodegradable poly (butylene succinate)/layered silicate nanocomposites. Macromolecules 36:2355–2367. doi:10.1021/ma021728y

    Article  Google Scholar 

  46. Dramé H, Beaudoin JJ, Raki L (2007) Structure property relationship in biodegradable poly (butylene succinate)/layered silicate nanocomposites. J Mater Sci 42:6846–6848. doi:10.1007/s10853-006-1328-5

    Article  Google Scholar 

  47. Taylor HFW (1986) Proposed structure of calcium silicate gel. J Am Ceram Soc 69(6):464–467. doi:10.1111/j.1151-2916.1986.tb07446.x

    Article  Google Scholar 

  48. Cong X, Kirkpatrick RJ (1995) Effects of the temperature and relative humidity on the structure of C-S-H gel. Cement Concr Res 25:1237–1245. doi:10.1016/0008-8846(95)00116-T

    Article  Google Scholar 

  49. Raupach M, Barron PF, Thompson JG (1987) Nuclear Magnetic Resonance, Infrared and X-ray powder diffraction study of dimethylsulfoxide and dimethylselenoxide intercalates with kaolinite. Clays Clay Miner 35:208–219. doi:10.1346/CCMN.1987.0350307

    Article  Google Scholar 

  50. Thompson JG, Cuff C (1985) Crystal structure of kaolinite: dimethylsulfoxide intercalate. Clays Clay Miner 33:490–500. doi:10.1346/CCMN.1985.0330603

    Article  Google Scholar 

  51. Alemany LB, Grant DM, Alger TD, Pugmire RJ (1983) Cross-polarization and magic angle spinning NMR spectra of model organic compounds 3. Effect of 13C-1H dipolar interaction on cross-polarization and carbon proton dephasing. J Am Chem Soc 105:6697–6704. doi:10.1021/ja00360a025

    Article  Google Scholar 

  52. Opella SJ, Frey MH (1979) Selection of protonated carbon resonances in solid state nuclear magnetic resonance. J Am Chem Soc 101:5954–5956

    Google Scholar 

  53. Ripmeester JA, Burlinson NE (1985) Chiral discrimination and solid state 13C NMR. Application to tri-o-thymotide clathrates. J Am Chem Soc 107:3713–3714. doi:10.1021/ja00298a049

    Article  Google Scholar 

  54. Franceschini A, Abramson S, Bresson B, Vandamme H, Lequeux N (2007) Cement-silylated polymers nanocomposites. In: Proc. 12th Int. Cong. Chem. Cem. Theme ST5, Montreal, July 08–13, 2007

  55. Matsuyama H, Young JF (1999) Intercalation of polymers in calcium silicate hydrate: a new synthetic approach to biocomposites. Chem Mater 11:16–19. doi:10.1021/cm980549l

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Beaudoin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaudoin, J.J., Dramé, H., Raki, L. et al. Formation and properties of C-S-H–PEG nano-structures. Mater Struct 42, 1003–1014 (2009). https://doi.org/10.1617/s11527-008-9439-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-008-9439-x

Keywords

Navigation