Skip to main content
Log in

Durability of lightweight OPS concrete under different curing conditions

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The use of waste materials and by products from different industries for building construction has been gaining increased attention due to the rapid depletion of natural resources. It has been found that oil palm shell (OPS), which is a waste from the agricultural sector, can be used as coarse aggregate for the manufacture of structural lightweight concrete. However, for OPS concrete to be used in practical applications, its durability needs to be investigated. Therefore, this paper presents the durability performance of OPS concrete under four curing regimes. The durability properties investigated include the volume of permeable voids (VPVs), sorptivity, water permeability, chloride diffusion coefficient and time to corrosion initiation from the 90-day salt ponding test, and Rapid Chloride Penetrability Test (RCPT). Results showed that the durability properties of OPS concrete were comparable to that of other conventional lightweight concretes and proper curing is essential for OPS concrete to achieve better durability especially at the later ages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Mannan MA, Ganapathy C (2004) Concrete from an agricultural wastes-oil palm shell (OPS). Build Environ 39(4):441–448. doi:10.1016/j.buildenv.2003.10.007

    Article  Google Scholar 

  2. Teo DCL, Mannan MA, Kurian VJ (2006) Flexural behaviour of reinforced lightweight concrete beams with oil palm shell (OPS). Adv Concr Technol 4(3):459–468. doi:10.3151/jact.4.459

    Article  Google Scholar 

  3. Teo DCL, Mannan MA, Kurian VJ (2006) Structural concrete using oil palm shell (OPS) as lightweight aggregate. Turk J Eng Environ Sci 30(4):251–257

    Google Scholar 

  4. Teo DCL, Mannan MA, Kurian VJ, Ganapathy C (2007) Lightweight concrete made from oil palm shell (OPS): structural bond and durability properties. Build Environ 42(7):2614–2621. doi:10.1016/j.buildenv.2006.06.013

    Article  Google Scholar 

  5. Zhang T, Gjørv OE (1991) Permeability of high-strength lightweight concrete. ACI Mater J 88(5):463–469

    Google Scholar 

  6. Chia KS, Zhang MH (2002) Water permeability and chloride penetrability of high-strength lightweight aggregate concrete. Cement Concr Res 32(4):639–645. doi:10.1016/S0008-8846(01)00738-4

    Article  Google Scholar 

  7. Neville AM (1999) Properties of concrete. Longman, Malaysia

    Google Scholar 

  8. Kearsley EP, Wainwright PJ (2001) Porosity and permeability of foamed concrete. Cement Concr Res 31(5):805–812. doi:10.1016/S0008-8846(01)00490-2

    Article  Google Scholar 

  9. Khatib JM, Mangat PS (1995) Absorption characteristics of concrete as a function of location relative to casting position. Cement Concr Res 25(5):999–1010. doi:10.1016/0008-8846(95)00095-T

    Article  Google Scholar 

  10. Bentur A, Igarashi S, Kovler K (2001) Prevention of autogenous shrinkage in high-strength concrete by internal curing using wet lightweight aggregates. Cement Concr Res 31(11):1587–1591. doi:10.1016/S0008-8846(01)00608-1

    Article  Google Scholar 

  11. Al-Khaiat H, Haque MN (1998) Effect of initial curing in early strength and physical properties of a lightweight concrete. Cement Concr Res 28(6):859–866. doi:10.1016/S0008-8846(98)00051-9

    Article  Google Scholar 

  12. Short A, Kinniburgh W (1978) Lightweight concrete. Applied Science Publishers Ltd., London

    Google Scholar 

  13. Shetty MS (1993) Concrete technology. S. Chand and Company Ltd., India

    Google Scholar 

  14. Mannan MA, Ganapathy C (2001) Mix design for oil palm shell concrete. Cement Concr Res 31(9):1323–1325. doi:10.1016/S0008-8846(01)00585-3

    Article  Google Scholar 

  15. Pankhurst RNW (1993) Construction. In: Clarke JL (ed) Structural lightweight aggregate concrete. Blackie Academic & Professional, Glasgow, pp 75–105

    Google Scholar 

  16. Mindess S, Young JF, Darwin D (2003) Concrete, 2nd edn. Prentice Hall, USA

    Google Scholar 

  17. BS 1881: Part 108, Method for making test cubes from fresh concrete. British Standard Institution, London

  18. Barnbrook G, Dore E, Jeffrey AH, Keen R, Parkinson JD, Sawtell DL, Shacklock BW, Spratt BH (1975) Concrete practice. Wexham Springs, Cement Concrete Association

  19. ACI 318 Building code requirements for reinforced concrete. ACI manual of concrete practice, Detroit, American Concrete Institute

  20. ACI 308 Recommended practice for curing concrete. ACI manual of concrete practice, Detroit, American Concrete Institute

  21. Shayan A, Xu A (2006) Performance of glass powder as a pozzolanic material in concrete: a field trial on concrete slabs. Cement Concr Res 36(3):457–468. doi:10.1016/j.cemconres.2005.12.012

    Article  Google Scholar 

  22. ASTM C 642 Standard test method for density, absorption, and voids on hardened concrete. Annual Book of ASTM Standards

  23. Chan SYN, Ji X (1998) Water sorptivity and chloride diffusivity of oil shale ash concrete. Construct Build Mater 12(4):177–183. doi:10.1016/S0950-0618(98)00006-3

    Article  Google Scholar 

  24. Tsivilis S, Tsantilas J, Kakali G, Chaniotakis E, Sakellariou A (2003) The permeability of Portland limestone cement concrete. Cement Concr Res 33(9):1465–1471. doi:10.1016/S0008-8846(03)00092-9

    Article  Google Scholar 

  25. AASHTO T 259 Standard method of test for resistance of concrete to chloride ion penetration. American Association of State Highway and Transportation Officials

  26. Herald SE, Henry M, Al-Qadi IL, Weyers RE, Feeney MA, Howlum SF, Cady PD (1993) Condition evaluation of concrete bridges relative to reinforcement corrosion, vol 6: method for field determination of total chloride content. Strategic Highway Research Program, National Research Council, Washington

  27. Erdoğdu Ş, Kondratova IL, Bremner TW (2004) Determination of chloride diffusion coefficient of concrete using open-circuit potential measurements. Cement Concr Res 34(4):630–639. doi:10.1016/j.cemconres.2003.09.024

    Google Scholar 

  28. Roy SK, Liam KC, Northwood DO (1993) Chloride ingress in concrete as measured by field exposure tests in the atmospheric, tidal and submerged zones of a tropical marine environment. Cement Concr Res 23(6):1289–1306. doi:10.1016/0008-8846(93)90067-J

    Article  Google Scholar 

  29. ASTM C 1202 Standard test method for electrical indication of concrete’s ability to resist chloride ion penetration. Annual Book of ASTM Standards

  30. Poon CS, Kou SC, Lam L (2006) Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Construct Build Mater 20(10):858–865. doi:10.1016/j.conbuildmat.2005.07.001

    Article  Google Scholar 

  31. Oh BH, Cha SW, Jang BS, Jang SY (2002) Development of high performance concrete having high resistance to chloride penetration. Nucl Eng Des 212(1–3):221–231. doi:10.1016/S0029-5493(01)00484-8

    Article  Google Scholar 

  32. Gowripalan N, Mohamad HM (1998) Chloride-ion induced corrosion of galvanised and ordinary steel reinforcement in high-performance concrete. Cement Concr Res 28(8):1119–1131. doi:10.1016/S0008-8846(98)00090-8

    Article  Google Scholar 

  33. Gjørv OE, Tan K, Zhang MH (1994) Diffusivity of chlorides from seawater into high-strength lightweight concrete. ACI Mater J 91(5):447–452

    Google Scholar 

  34. Feldman R, Prudencio LR, Chan G (1999) Rapid chloride permeability test on blended cement and other concretes: correlations between charge, initial current and conductivity. Construct Build Mater 13(3):149–154. doi:10.1016/S0950-0618(98)00033-6

    Article  Google Scholar 

  35. Streicher PE, Alexander MG (1995) A chloride conduction test for concrete. Cement Concr Res 25(6):1284–1294. doi:10.1016/0008-8846(95)00121-R

    Article  Google Scholar 

  36. Andrade C (1993) Calculation of chloride diffusion coefficients in concrete from ionic migration measurements. Cement Concr Res 23(3):724–742. doi:10.1016/0008-8846(93)90023-3

    Article  Google Scholar 

  37. Shayan A, Xu A (2006) Performance of glass powder as a pozzolanic material in concrete: a field trial on concrete slabs. Cement Concr Res 36(3):457–468. doi:10.1016/j.cemconres.2005.12.012

    Article  Google Scholar 

  38. Saricimen H, Maslehuddin M, Al-Tayyib AJ, Al-Mana AI (1995) Permeability and durability of plain and blended cement concretes cured in field and laboratory conditions. ACI Struct J 92(2):1–6

    Google Scholar 

  39. Maltais Y, Ouellet E, Marchand J, Samson E, Burke D (2006) Prediction of the long-term durability of lightweight aggregate concrete mixtures under severe marine environment. Mater Struct 39(9):911–918. doi:10.1617/s11527-006-9127-7

    Article  Google Scholar 

  40. Holm TA, Bremner TW (1991) The durability of structural lightweight concrete. In: Proceedings of the second international conference on the durability of concrete, Montreal, Canada

  41. Khatib JM, Mangat PS (1995) Absorption characteristics of concrete as a function of location relative to casting position. Cement Concr Res 25(5):999–1010. doi:10.1016/0008-8846(95)00095-T

    Article  Google Scholar 

  42. EuroLightCon (2000) Properties of lightweight concretes containing Lytag and Liapor. European Union—Brite EuRam III, Document BE96-3942/R8. http://www.sintef.no/static/BM/projects/EuroLightCon/BE3942R08.pdf. Accessed 2 Apr 2006

  43. Hall C, Yau MHR (1987) Water movement in porous materials—IX. The water, sorptivity of concretes. Build Environ 22(1):77–82. doi:10.1016/0360-1323(87)90044-8

    Article  Google Scholar 

  44. Lo TY, Cui HZ (2004) Effect of porous lightweight aggregate on strength of concrete. Mater Lett 58(6):916–919. doi:10.1016/j.matlet.2003.07.036

    Article  Google Scholar 

  45. Topçu İB, Uygunoğlu T (2007) Properties of autoclaved lightweight aggregate concrete. Build Environ 42(12):4108–4116. doi:10.1016/j.buildenv.2006.11.024

    Article  Google Scholar 

  46. Hossain KMA (2004) Properties of volcanic pumice based cement and lightweight concrete. Cement Concr Res 34(2):283–291. doi:10.1016/j.cemconres.2003.08.004

    Article  Google Scholar 

  47. Zhang MH, Gjørv OE (2005) Effect of chloride source concentration on chloride diffusivity in concrete. ACI Mater J 102(5):295–298

    Google Scholar 

  48. Gruber KA, Ramlochan T, Boddy A, Hooton RD, Thomas MDA (2001) Increasing concrete durability with high-reactivity metakaolin. Cement Concr Compos 23(6):479–484. doi:10.1016/S0958-9465(00)00097-4

    Article  Google Scholar 

  49. Mackechnie JR, Alexander MG (1997) Exposure of concrete in different marine environments. J Mater Civ Eng 9(1):41–44. doi:10.1061/(ASCE)0899-1561(1997)9:1(41)

    Article  Google Scholar 

  50. BS 8110: Part 1 Structural use of concrete, Clause: 6.2.5.2: chlorides in concrete. British Standard

  51. Stanish KD, Hooton RD, Thomas MDA (1997) Testing the chloride penetration resistance of concrete: a literature review, prediction of chloride penetration in concrete. FHWA contract DTFH61-97-R-00022: 1–30

Download references

Acknowledgement

This project was funded by Ministry of Science, Technology and Innovation, Malaysia under IRPA research grant no. 03-02-10-0033-EA0031. The investigation was conducted at Universiti Malaysia Sabah.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. L. Teo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teo, D.C.L., Mannan, M.A. & Kurian, V.J. Durability of lightweight OPS concrete under different curing conditions. Mater Struct 43, 1–13 (2010). https://doi.org/10.1617/s11527-008-9466-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-008-9466-7

Keywords

Navigation