Skip to main content
Log in

Early-age autogenous cracking of cementitious matrices: physico-chemical analysis and micro/macro investigations

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

High-performance cement-based materials, characterized by low water-to-cement (W/C) ratio and high cement content, are sensitive to early-age cracking because their autogenous shrinkage rate and magnitude are particularly high during this period. This article firstly presents experimental tools especially designed for the measurement of free and restrained autogenous shrinkage at early-age. Then, the results of a multi-parameter experimental study conducted on three different types of binder are analyzed. The physico-chemical deformations of cement pastes and mortars were measured from the very early-age up to several days in saturated and autogenous conditions to investigate the effects of binder, water-to-binder ratio, presence of aggregates and temperature on the driving-mechanisms leading to early-age autogenous cracking. Complementary tests such as hydration rate measurement and microscopic observations were also performed. Among the three binders used, the blast furnace slag cement shows higher chemical strain, for a given quantity of chemically-bound water, and higher early-age autogenous shrinkage. The presence of aggregates generates a local restraining effect of cement paste deformations, leading to the formation of microcracks in the surrounding cement paste. Ring test results reveal that the first through crack of cement pastes systematically appears for maximal internal stress values lower than the material tensile strength, estimated with three-point flexural tests. This phenomenon may be due to diffuse damage of the cementitious matrix, whose deformations are partially restrained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Acker P (1988) Comportement mécanique du béton : Apports de l’approche physicochimique. Research report no. 152, Laboratoire Central des Ponts et Chaussées

  2. Torrenti JM (1996) Comportement mécanique du béton: Bilan de six années de recherche. Research report, Publication LCPC – Série ouvrages d’art – OA 23, 109, Paris, France

  3. Bentur A (2000) Early age shrinkage and cracking in cementitious systems. In: Baroghel-Bouny V, Aïtcin PC (eds) Proceedings of the international RILEM symposium on shrinkage (Shrinkage 2000), Paris, France, pp 1–20

  4. Garcia-Boivin S (2001) Retrait au jeune âge du béton : Développement d’une méthode expérimentale et contribution à l’analyse physique du retrait endogène. PhD Dissertation, ENPC, Paris, France

  5. Mounanga P, Khelidj A, Loukili A, Baroghel-Bouny V (2004) Predicting Ca(OH)2 content and chemical shrinkage of hydrating cement pastes using analytical approach. Cem Concr Res 34(2):255–265. doi:10.1016/j.cemconres.2003.07.006

    Article  Google Scholar 

  6. Lura P, Jensen OM, van Breugel K (2003) Autogenous shrinkage in high-performance cement paste: an evaluation of basic mechanisms. Cem Concr Res 33(2):223–232. doi:10.1016/S0008-8846(02)00890-6

    Article  Google Scholar 

  7. Bjøntegaard Ø, Hammer TA, Sellevold EJ (2004) On the measurement of free deformation of early age cement paste and concrete. Cem Concr Compos 26(5):427–435. doi:10.1016/S0958-9465(03)00065-9

    Article  Google Scholar 

  8. Lura P, Jensen OM (2007) Measuring techniques for autogenous strain of cement paste. Mater Struct 40(4):431–440. doi:10.1617/s11527-006-9180-2

    Article  Google Scholar 

  9. Laplante P, Boulay C (1994) Evolution du coefficient de dilatation thermique du béton en fonction de sa maturité aux tout premiers âges. Mater Struct 27(10):596–605. doi:10.1007/BF02473129

    Article  Google Scholar 

  10. Jensen OM, Hansen PF (1995) A dilatometer for measuring autogenous deformation in hardening Portland cement paste. Mater Struct 28(181):406–409. doi:10.1007/BF02473076

    Article  Google Scholar 

  11. Justnes H, Van Gemert A, Verboven F, Sellevold EJ (1996) Total and external chemical shrinkage of low W/C ratio cement pastes. Adv Cem Res 8(31):121–126

    Google Scholar 

  12. Bjøntegaard Ø (1999) Thermal dilation and autogenous deformation as driving forces to self-induced stresses in high performance concrete. PhD Dissertation, NTNU Division of Structural Engineering, Trodheim, Norway

  13. Gagné R, Aouad I, Shen J, Poulin C (1999) Development of a new experimental technique for the study of the autogenous shrinkage of cement paste. Mater Struct 32(9):635–642. doi:10.1007/BF02481701

    Article  Google Scholar 

  14. Bouasker M, Mounanga P, Khelidj A, Coué R (2008) Free autogenous strain of early-age cement paste: metrological development and critical analysis. Adv Cem Res 20(2):75–84. doi:10.1680/adcr.2008.20.2.75

    Article  Google Scholar 

  15. Mohr BJ, Hood KL (2010) Influence of bleed water reabsorption on cement paste autogenous deformation. Cem Concr Res 40(2):220–225. doi:10.1016/j.cemconres.2009.10.014

    Article  Google Scholar 

  16. Morabito P et al. (contribution of 13 authors) (2001) Round Robin testing programme: equipment, testing methods, test results. IPACS research report, TU Lulea, Sweden

  17. ASTM Standard C1698 (2009) Standard test method for autogenous strain of cement paste and mortar. ASTM International, West Conshohocken. doi:10.1520/C1698-09

  18. Taylor HFW (1990) Cement chemistry. Academic Press Limited, San Diego

    Google Scholar 

  19. Loukili A, Khelidj A, Richard P (1999) Hydration kinetics, change of relative humidity and autogenous shrinkage of ultra-high-strength concrete. Cem Concr Res 29(4):577–584. doi:10.1016/S0008-8846(99)00022-8

    Article  Google Scholar 

  20. Spinner S, Tefft WE (1961) A method for determining mechanical resonance frequencies and for calculating elastic moduli from these frequencies. Proc ASTM 61:1221–1238

    Google Scholar 

  21. Scrivener KL (2004) Backscattered electron imaging of cementitious microstructures: understanding and quantification. Cem Concr Compos 26(8):935–945. doi:10.1016/j.cemconcomp.2004.02.029

    Article  Google Scholar 

  22. Justnes H, Sellevold EJ, Reyniers B, Van Loo D, Van Gemert A, Verboven F, Van Gemert D (2000) Chemical shrinkage of cement pastes with plasticizing admixtures. Nord Concr Res 24:39–54

    Google Scholar 

  23. Justnes H, Sellevold EJ, Reyniers B, Van Loo D, Van Gemert A, Verboven F, Van Gemert D (1999) The influence of cement characteristics on chemical shrinkage. In: Tazawa EI (ed) Proceeding of international workshop on autogenous shrinkage of concrete Autoshrink ‘98, Hiroshima, Japan. E&FN Spon, London, pp 71–80

    Google Scholar 

  24. Bentz DP, Lura P, Roberts JW (2005) Mixture proportioning for internal curing. Concr Int 27(2):35–40

    Google Scholar 

  25. Lam L, Wong YL, Poon CS (2000) Degree of hydration and gel/space ratio of high volume fly ash/cement systems. Cem Concr Res 30(5):747–756. doi:10.1016/S0008-8846(00)00213-1

    Article  Google Scholar 

  26. Copeland LE, Bragg RH (1955) Self desiccation in Portland cement pastes. Res Lab Portland Cem Assoc Bull 52:1–11

    Google Scholar 

  27. Justnes H, Van Loo D, Reyniers B, Skalle P, Sveen J, Sellevold EJ (1995) Chemical shrinkage of oil well cement slurries. Adv Cem Res 7(26):85–90

    Google Scholar 

  28. Holt E (2001) Early age autogenous shrinkage of concrete. PhD Dissertation, University of Washington, United States

  29. Baroghel-Bouny V, Mounanga P, Khelidj A, Loukili A, Rafaï N (2006) Autogenous deformations of cement pastes—Part II: W/C effects, micro–macro correlations and threshold values. Cem Concr Res 36(1):123–136. doi:10.1016/j.cemconres.2004.10.020

    Article  Google Scholar 

  30. Schindler AK, Folliard KJ (2005) Heat of hydration models for cementitious materials. ACI Mater J 102(1):24–33

    Google Scholar 

  31. Ballim Y, Graham PC (2009) The effects of supplementary cementing materials in modifying the heat of hydration of concrete. Mater Struct 42(6):803–811. doi:10.1617/s11527-008-9425-3

    Article  Google Scholar 

  32. Mounanga P, Khokhar MIA, El Hachem R, Loukili A (2010) Improvement of the early-age reactivity of fly ash and blast furnace slag cementitious systems using limestone filler. Mater Struct (in press). doi:10.1617/s11527-010-9637-1

  33. Bonavetti VL, Rahhal VF, Irassar EF (2001) Studies on the carboaluminate formation in limestone filler-blended cements. Cem Concr Res 31(6):853–859. doi:10.1016/S0958-9465(01)00056-7

    Article  Google Scholar 

  34. Regourd M (1980) Structure and behavior of slag Portland cement hydrates. In: Proceedings of the 7th international congress on the chemistry of cement (7th ICCC), vol 1 III–2. Editions Septima, Paris, France, pp 10–26

  35. Richardson IG, Groves GW (1992) Microstructure and microanalysis of hardened pastes involving ground granulated blast-furnace slag. J Mater Sci 27(22):6204–6212. doi:10.1007/BF01133772

    Article  Google Scholar 

  36. Escalante-Garcia JI, Sharp JH (2001) The microstructure and mechanical properties of blended cements hydrated at various temperatures. Cem Concr Res 31(5):695–702. doi:10.1016/S0008-8846(01)00471-9

    Article  Google Scholar 

  37. Bouasker M, Mounanga P, Turcry P, Loukili A, Khelidj A (2008) Chemical shrinkage of cement pastes and mortars at very early age: effect of limestone filler and granular inclusions. Cem Concr Compos 30(1):13–22. doi:10.1016/j.cemconcomp.2007.06.004

    Article  Google Scholar 

  38. Cyr M, Lawrence P, Ringot E (2006) Efficiency of mineral admixtures in mortars: quantification of the physical and chemical effects of fine admixtures in relation with compressive strength. Cem Concr Res 36(2):264–277. doi:10.1016/j.cemconres.2005.07.001

    Article  Google Scholar 

  39. Lura P, van Breugel K, Maruyama I (2001) Effect of curing temperature and type of cement on early-age shrinkage of high-performance concrete. Cem Concr Res 31(12):1867–1872. doi:10.1016/S0008-8846(01)00601-9

    Article  Google Scholar 

  40. Jiang Z, Sun Z, Wang P (2005) Autogenous relative humidity change and autogenous shrinkage of high performance cement pastes. Cem Concr Res 35(8):1539–1545. doi:10.1016/j.cemconres.2004.06.028

    Article  Google Scholar 

  41. Lee KM, Lee HK, Lee SH, Kim GY (2006) Autogenous shrinkage of concrete containing granulated blast-furnace slag. Cem Concr Res 36(7):1279–1285. doi:10.1016/j.cemconres.2006.01.005

    Article  Google Scholar 

  42. Hanehara S, Hirao H, Uchikawa H (1999) Relationship between autogenous shrinkage and the microstructure and humidity changes at inner part of hardened cement pastes at early ages. In: Tazawa EI (ed) Proceeding of international workshop on autogenous shrinkage of concrete Autoshrink ‘98, Hiroshima, Japan. E&FN Spon, London, pp 89–100

    Google Scholar 

  43. Radocea A (1998) Autogenous volume change of concrete at very early age. Mag Concr Res 50(2):107–113

    Article  Google Scholar 

  44. Bisschop J, van Mier JGM (2002) Effect of aggregates on drying shrinkage microcracking in cement-based composites. Mater Struct 35(8):453–461. doi:10.1007/BF02483132

    Article  Google Scholar 

  45. Lura P, Jensen OM, Weiss J (2009) Cracking in cement paste induced by autogenous shrinkage. Mater Struct 42(8):1089–1099. doi:10.1617/s11527-008-9445-z

    Article  Google Scholar 

  46. Grassl P, Wong HS, Buenfeld NR (2010) Influence of aggregate size and volume fraction on shrinkage induced micro-cracking of concrete and mortar. Cem Concr Res 40(1):85–93. doi:10.1016/j.cemconres.2009.09.012

    Article  Google Scholar 

  47. Belaribi N, Pons G, Perrin B (1997) Delayed behaviour of concrete: influence of additions and aggregate characteristics in relation to moisture variations. Cem Concr Res 27(9):1429–1438. doi:10.1016/S0008-8846(97)00125-7

    Article  Google Scholar 

  48. Bisschop J, van Mier JGM (2002) How to study drying shrinkage microcracking in cement-based materials using optical and scanning electron microscopy. Cem Con Res 32(2):279–287. doi:10.1016/S0008-8846(01)00671-8

    Article  Google Scholar 

  49. Elsharief A, Menashi D, Jan O (2003) Influence of aggregate size, water cement ratio and age on the microstructure of the interfacial transition zone. Cem Concr Res 33(11):1837–1849. doi:10.1016/S0008-8846(03)00205-9

    Article  Google Scholar 

  50. Hossain AB (2003) Assessing residual stress development and stress relaxation in restrained concrete ring specimens. PhD Dissertation, University of Purdue, United States

  51. Turcry P, Loukili A, Haidar K, Pijaudier-Cabot G, Belarbi A (2006) Cracking tendency of self-compacting concrete subjected to restrained shrinkage: experimental study and modelling. J Mater Civ Eng 18(1):46–54. doi:10.1061/(ASCE)0899-1561(2006)18:1(46))

    Article  Google Scholar 

  52. Altoubat SA, Lange DA (2001) Creep, shrinkage and cracking of restrained concrete at early-age. ACI Mater J 98(4):323–331

    Google Scholar 

  53. Van Breugel K, Lokhorst SJ (2001) Stress-based crack criterion as a basis for the prevention of through cracks in concrete structures at early-ages. In: Kovler K, Bentur A (eds) Proceedings of the international RILEM conference on early-age cracking in cementitious systems (EAC’01), Haïfa, Israël, pp 145–158

  54. Ma X, Cao L, Hooton RD, Lam H, Niu C (2007) Time-dependent early-age behaviors of concrete under restrained condition. J Wuhan Univ Technol Mater 22(2):350–353. doi:10.1007/s11595-005-2350-1

    Article  Google Scholar 

  55. Weiss WJ, Ferguson S (2001) Restrained shrinkage testing: the impact of specimen geometry on quality control testing for material performance assessment. In: Ulm FJ, Bažant ZP, Wittman FH (eds) Proceedings of the international conference on creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials (Concreep 6), Cambridge, MA, United States. Elsevier, pp 645–651

  56. Pijaudier-Cabot G, Mazars J (2001) Damage models for concrete. In: Lemaitre J (ed) Handbook of materials behavior—Chapter 6, vol 2. Academic Press, pp 542–548

  57. Chariton T, Kim B, Weiss WJ (2002) Using passive acoustic energy to quantify cracking in volumetrically restrained cementitous systems. In: Smyth A (ed) Proceedings of the 15th ASCE engineering mechanics conference (EM2002), New York

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Mounanga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mounanga, P., Bouasker, M., Pertue, A. et al. Early-age autogenous cracking of cementitious matrices: physico-chemical analysis and micro/macro investigations. Mater Struct 44, 749–772 (2011). https://doi.org/10.1617/s11527-010-9663-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-010-9663-z

Keywords

Navigation