Skip to main content
Log in

Intrinsic scatter of FRC: an alternative philosophy to estimate characteristic values

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The results from small-scale laboratory tests of fibre reinforced concrete (FRC) usually show a high scatter. However, several studies indicate that the real scatter on the post-cracking response of the material reduces considerably with the increase of the size of the elements tested. Such observations highlights a possible contradiction in the design of FRC since the characteristic values estimated from small-scale tests might not be representative of large-scale structures. This could penalize the material, leading to higher fibre consumption, less competitive solutions and problems in the quality control. The main objective of the present study is to address this fundamental issue. The aim is to evaluate the scatter that is intrinsic to the FRC and how it is affected by the size of the element, the type of concrete, the type and content of fibre. For that, a novel numerical approach is proposed for the simulation of the material and its variability. Then, an extensive parametric study is conducted with more than 35,000 models, each one unique in terms of fibre distribution. Based on this analysis, equations are proposed to estimate the intrinsic scatter depending on several parameters. Finally, an alternative formulation is defined to estimate the characteristic value of the FRC considering the real structure in which it will be applied. The results derived from this study represent a contribution towards a more efficient design of structures and the reduction of the non-conformities in the quality control of the FRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bencardino F, Rizzuti L, Spadea G, Swamyc RN (2013) Implications of test methodology on post-cracking and fracture behaviour of steel fibre reinforced concrete. Compos Part B 46:31–38

    Article  Google Scholar 

  2. Blanco A, Pujadas P, de la Fuente A, Cavalaro S, Aguado A (2013) Application of constitutive models in European codes to RC–FRC. Constr Build Mater 40:246–259

    Article  Google Scholar 

  3. Blanco A (2013) Characterization and modelling of SFRC elements. PhD Thesis Defended at the Universidad Politécnica de Cataluña. Barcelona, Spain

  4. Giaccio G, Tobes J, Zerbino R (2008) Use of small beams to obtain design parameters of fibre reinforced concrete. Cem Concr Compos 30:297–306

    Article  Google Scholar 

  5. di Prisco M, Plizzari G, Vandewalle L (2009) Fibre reinforced concrete: new design perspectives. Mater Struct 42:1261–1281

    Article  Google Scholar 

  6. de la Fuente A, Escariz RC, Figueiredo AD, Aguado A (2013) Design of macro-synthetic fibre reinforced concrete pipes. Constr Build Mater 43:523–532

    Article  Google Scholar 

  7. Hedebratt J (2012) Industrial Fibre Concrete Floors. TRITA-BKN. Bullletin 113:90

    Google Scholar 

  8. Vandewalle L, Van Rickstal F, Heirman G, Parmentier B (2008) On the round panel and 3-point bending tests. 7th RILEM international symposium on fibre reinforced concrete: design and applications—BEFIB, p 10

  9. de la Fuente A (2011) Nueva metodología para el diseño de tubos de hormigón estructural”. PhD Thesis defended at the Universidad Politécnica de Cataluña. Barcelona, Spain

  10. Kooiman AG (2000) Modelling steel fibre reinforced concrete for structural design”. PhD Thesis depended at TU Delft. Delft, The Netherlands

  11. Bernard ES, Pircher M (2001) The influence of thickness on performance of fiber-reinforced concrete in a round determinate panel test. J Cem Concr Aggreg 23(1)

  12. de la Fuente A, Escariz RC, Figueiredo AD, Molins C, Aguado A (2012) A new design method for steel fibre reinforced concrete pipes. Constr Build Mater 30:547–555

    Article  Google Scholar 

  13. Pros A (2012) Numerical approach for modeling steel fiber reinforced concrete. PhD Thesis Defended at the Universidad Politécnica de Cataluña. Barcelona, Spain

  14. Cunha V, Barros J, Sena-Cruzb J (2011) An integrated approach for modelling the tensile behaviour of steel fibre reinforced self-compacting concrete. Cem Concr Res 41(1):64–76

    Article  Google Scholar 

  15. Pros A, Diez P, Molins C (2012) Modeling steel fiber concrete: numerical immersed boudery approach and a phenomenological mesomodel for concrete-fiber interaction. Int J Numer Methods Eng 90:65–86

    Article  MATH  MathSciNet  Google Scholar 

  16. Bazant Z, Novák D (2000) Probabilistic nonlocal theory for quasibrittle fracture initiation and size effect. I: theory. J Eng Mech 126:166–174

    Article  Google Scholar 

  17. Bazant Z, Pang S, Vorechovský M, Novák D (2007) Energetic–statistical size effect simulated by SFEM with stratified sampling and crack band model. Int J Numer Meth Eng 71:1297–1320

    Article  MATH  Google Scholar 

  18. Rilem TCQFS (2004) Quasibrittle fracture scaling and size effect—final report. Mater Struct 37:547–568

    Article  Google Scholar 

  19. Molins C, Pros A, Díez P (2012) Numerical tool for modeling steel fiber reinforced concrete. RILEM international symposium on fibre reinforced concrete. Eighth RILEM international symposium on fibre reinforced concrete (BEFIB 2012): challenges and opportunities. Guimarães, Portugal, 19-21 September, 2012. Guimarães, Portugal, pp 1–9

  20. Bentur A, Mindess S (2006) Fibre reinforced cementitious composites. 2nd edn, p 624

  21. Naaman A, Nammur G, Alwan J, Najm H (1991) Fiber pullout and bond slip. I: analytical study. J Struct Eng 117(9):2769–2790

    Article  Google Scholar 

  22. Stang H, Li Z, Shah S (1990) Pullout problem: stress versus fracture mechanical approach. J Eng Mech 116(10):2136–2150

    Article  Google Scholar 

  23. Wang Y, Li VC, Backer S (1998) Modelling of fibre pull-out from a cement matrix. Int J Cem Compos Lightweight Concr 10(3):143–149

    Article  Google Scholar 

  24. Laranjeira F (2010) Design-oriented constitutive model for steel fiber reinforced concrete. PhD Thesis Defended at the Universidad Politécnica de Cataluña. Barcelona, Spain

  25. Laranjeira F, Molins C, Aguado A (2010) Predicting the pullout response of inclined straight steel fibers. Mater Struct 43(6):875–895

    Article  Google Scholar 

  26. Laranjeira F, Molins C, Aguado A (2010) Predicting the pullout response of inclined hooked steel fibers. Cem Concr Res 40(10):1471–1487

    Article  Google Scholar 

  27. Leung C, Shapiro N (1999) Optimal steel fiber strength for reinforcement of cementitious materials. J Mater Civ Eng 11(2):116–123

    Article  Google Scholar 

  28. Robins P, Austin S, Jones P (2002) Pull-out behavior of hooked steel fibres. Mater Struct 35:434–442

    Article  Google Scholar 

  29. Van Gysel A (2000) Studie van het uittrekgedrag van staalvezels ingebed in een cementgebonden matrix met toepassing op staalvezelbeton onderworpen aan buiging. PhD Thesis Defended at the Gent University. Gent, Belgium

  30. Blanco A (2008) Durabilidad del hormigón con fibras de acero. Minor Thesis Defended at the Universidad Politécnica de Cataluña. Barcelona, Spain

  31. Laranjeira F, Aguado A, Molins M, Grünewald S, Walraven J, Cavalaro S (2012) Framework to predict the orientation of fibers in FRC: a novel philosophy. Cem Concr Res 2(46):752–768

    Article  Google Scholar 

  32. Grünewald S (2006) Performance-based design of self-compacting fibre reinforced concrete. PhD Thesis Defended at TU Delft. Delft, The Netherlands

  33. Bar BIG, Lee MM, de Place Hansen EJ, Dupont D, Erdem E, Schaerlaekens B, Schnütgen B, Stang H, Vandewalle L (2003) Round-robin analysis of the RILEM TC 162-TDF beam-bending test: part 3—fibre distribution. Mater Struct 36:631–635

    Article  Google Scholar 

  34. Bar BIG, Lee MM, de Place Hansen EJ, Dupont D, Erdem E, Schaerlaekens B, Schnütgen B, Stang H, Vandewalle L (2003) Round-robin analysis of the RILEM TC 162-TDF beam-bending test: part 1—test method evaluation. Mater Struct 36:609–620

    Article  Google Scholar 

  35. Bar BIG, Lee MM, de Place Hansen EJ, Dupont D, Erdem E, Schaerlaekens B, Schnütgen B, Stang H, Vandewalle L (2003) Round-robin analysis of the RILEM TC 162-TDF beam-bending test: part 2—approximation of s from the CMOD response. Mater Struct 36:621–630

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. P. Cavalaro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalaro, S.H.P., Aguado, A. Intrinsic scatter of FRC: an alternative philosophy to estimate characteristic values. Mater Struct 48, 3537–3555 (2015). https://doi.org/10.1617/s11527-014-0420-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0420-6

Keywords

Navigation