Skip to main content
Log in

Hydration of calcium sulphoaluminate clinker with additions of different calcium sulphate sources

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In these last decades the complete comprehension of mechanisms that affect the hydration of calcium sulphoaluminate cement (CSA) has become crucial in the optic of an extensive use of CSA based systems as promising low-CO2 binders alternative to ordinary Portland cement. In this study the hydrated phases evolution of cementitious systems based on CSA clinker, mainly composed by ye’elimite (C4A3$) phase, blended with two calcium sulphate forms (i.e. gypsum and anhydrite) has been investigated. The adoption of 27Al magic-angle spinning NMR spectroscopy led to identify and follow the evolution of all the main CSA hydrated phases (i.e. ettringite, monosulfate, aluminium hydroxide) supporting the X-ray diffraction technique in the amorphous phase resolution. Thermogravimetric analysis has been adopted as complementary technique in the hydrated phases identification and the kinetic of the hydration process has been monitored by means of isothermal calorimetry. Experiments made on pastes hydrated at different ages (8, 16, 24 and 48 h) showed system reactivity strongly dependent on sulphate ion availability. In presence of gypsum, more soluble, a higher ettringite phase formation with a consequent greater C4A3$ consumption was detected in the first hours of hydration (8 h) slowing down the kinetic of phases formation only at later ages (48 h). Results showed how the different sulphate ion availability modifies the kinetics of CSA hydration process as well as the morphology of hydrated phases. SEM observations confirmed that the high solubility of gypsum led to formation of poorly-crystallized hydrated phases, with a consequent more dense matrix, while in the presence of anhydrite, less soluble, a well crystallized needle like ettringite has been detected as main hydrated phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. International Energy Agency World Business Council for Sustainable Development, Cement Technology Roadmap (2009). www.iea.org/publications/freepublications/.../Cement roadmap.pdf. Accessed 7 Jan 2015

  2. Gartner EM (2004) Industrially interesting approaches to “low-CO2” cements. Cem Concr Res 34(9):1489–1498

    Article  Google Scholar 

  3. Damtoft JS, Lukasik J, Herfort D, Sorrentino D, Gartner EM (2008) Sustainable development and climate change initiatives. Cem Concr Res 38(2):115–127

    Article  Google Scholar 

  4. Schneider M, Remer M, Tschudin T, Bolio H, Gartner EM (2011) Sustainable cement production-present and future. Cem Concr Res 41:642–650

    Article  Google Scholar 

  5. Klein A, Troxell GE (1958) Studies of calcium sulphoaluminate admixtures for expansive cements. ASTM Proc 58:988–1008

    Google Scholar 

  6. Nakamura T, Sudoh G, Akaiwa S (1968) Mineralogical composition of expansive cement clinker rich in SiO2 and its expansibility. Proceedings of 5th Int Congr Chem Cem Tokyo, Japan , vol IV: 351–365

  7. Budnikov PB, Kravchenko IV (1968) Expansive cements. Proceedings of 5th Int Congr Chem Cem, Tokyo, Japan, vol IV: 351–365

  8. Michel M, Georgin JF, Ambroise J, Péra J (2011) The influence of gypsum ratio on the mechanical performance of slag cement accelerated by calcium sulfoaluminate cement. Constr Build Mater 25(3):1298–1304

    Article  Google Scholar 

  9. Ioannou S, Lucía ReigL, Paine K, Quillin K (2014) Properties of a ternary calcium sulfoaluminate-calcium sulfate-fly ash cement. Cem Concr Res 56:75–83

    Article  Google Scholar 

  10. Telesca A, Marroccoli M, Pace ML, Tomasulo M, Valenti GL, Monteiro PJM (2014) A hydration study of various calcium sulfoaluminate cements. Cement Concr Compos 53:224–232

    Article  Google Scholar 

  11. Metha PK (1980) Investigations on energy-saving cements. World Cement Technol 11(4):166–177

    Google Scholar 

  12. Beretka J, Santoro L, Sherman N, Valenti GL Synthesis and properties of low energy cements based on C4A3$. Proceedings of 9th int congr chem cem, New Dehli, India, vol III: 195–200

  13. Berekta J, De Vito B, Santoro L, Sherman N, Valenti GL (1993) Hydraulic behavior of calcium sulphoaluminate-based cements derived from industrial process wastes. Cem Concr Res 23(5):1205–1214

    Article  Google Scholar 

  14. Beretka J, Cioffi R, Marroccoli M, Valenti GL (1996) Energy-saving cements obtained from chemical gypsum and other industrial wastes. Waste Manag 16(1–3):231–235

    Article  Google Scholar 

  15. Taylor HFW (1997) Cement chemistry, 2nd edn. Thomas Telford, London

    Book  Google Scholar 

  16. Winnefeld F, Lothenbach B (2010) Hydration of calcium sulphoaluminate cements—experimental findings and thermodynamic modelling. Cem Concr Res 40:1239–1247

    Article  Google Scholar 

  17. Lan W, Glasser FP (1996) Hydration of calcium sulphoaluminate cements. Adv Cem Res 8:127–134

    Article  Google Scholar 

  18. Zhang L, Glasser FP (2002) Hydration of calcium sulphoaluminate cement at less than 24h. Adv Cem Res 14(4):141–155

    Article  Google Scholar 

  19. Chen IA, Hargis CW, Juenger MCG (2012) Understanding expansion in calcium sulphoaluminate-belite cements. Cem Concr Res 42:51–60

    Article  Google Scholar 

  20. Valenti GL, Marroccoli M, Pace ML, Telesca A (2012) Discussion of the paper “understanding expansion in calcium sulfolaluminate-belite cements” by I.A. Chen. Cem Concr Res 42:1555–1559

    Article  Google Scholar 

  21. Winnefeld F, Barlag S (2009) Influence of calcium sulphate and calcium hydroxide on the hydration of calcium sulphoaluminate clinker. Zement Kalk Gips Int 12:42–53

    Google Scholar 

  22. Marchi M, Costa U (2011) Influence of the calcium sulphate and w/c ratio on the hydration of calcium sulfoaluminate cement. Proceedings of 13th int congr chem cem, Madrid 191

  23. Le Saout G, Lothenbach B, Hori A, Higuchi T, Winnefeld F (2013) Hydration of Portland cement with additions of calcium sulfoaluminates. Cem Concr Res 43:81–94

    Article  Google Scholar 

  24. Hargis CW, Kirchheim AP, Monteiro PJM, Gartner EM (2013) Early age hydration of calcium sulfoaluminate (synthetic ye’elimite,) in the presence of gypsum and varying amounts of calcium hydroxide. Cem Concr Res 48:105–115

    Article  Google Scholar 

  25. Pelletier L, Winnefeld F, Lothenbach B (2010) The ternary systems Portland cement-calcium sulphoaluminate clinker-anhydrite: hydration mechanism and mortar properties. Cem Concr Res 32:497–507

    Article  Google Scholar 

  26. Pelletier L, Winnefeld F, Lothenbach B, Le Saout G (2011) Influence of the calcium sulphate source on the hydration mechanism of Portland cement-calcium sulphoaluminate clinker-calcium sulphate binders. Cem Concr Comp 33:551–561

    Article  Google Scholar 

  27. MacKenzie KJD, Smith ME (2002) Multinuclear solid-state NMR of inorganic materials. Pergamon Press, Oxford

    Google Scholar 

  28. Hanna JV, Smith ME (2010) Recent technique developments and applications of solid state NMR in characterizing inorganic materials. Solid State Nucl Magn Reson 38(1):1–18

    Article  Google Scholar 

  29. Andersen MD, Jakobsen HJ, Skibsted J (2006) A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy. Cem Concr Res 36:3–17

    Article  Google Scholar 

  30. Andersen MD, Jakobsen HJ, Skibsted J (2004) Characterization of white Portland cement hydration and the C-S-H structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR. Cem Concr Res 34:857–868

    Article  Google Scholar 

  31. Parry-Jones G, Al-Tayyib AJ, Al-Dulaijan SU, Al-Mana AI (1989) 29Si MAS NMR hydration and compressive strength study in cement paste. Cem Concr Res 19:228–234

    Article  Google Scholar 

  32. Brunet F, Charpentier T, Chao CN, Peycelon H, Nonat A (2010) Characterization by solid-state NMR and selective dissolution techniques of anhydrous and hydrated CEM V cement pastes. Cem Concr Res 40:208–219

    Article  Google Scholar 

  33. Skibsted J, Henderson E, Jakobsen HJ (1993) Characterization of calcium aluminate phase in cements by 27Al MAS NMR spectroscopy. Inorg Chem 32:1013–1027

    Article  Google Scholar 

  34. Calos NJ, Kennard CHL, Whittaker AK, Davis RL (1995) Structure of calcium aluminate sulfate Ca4Al6O16S. J Solid State Chem 119:1–7

    Article  Google Scholar 

  35. Song JT, Young JF (2002) Direct synthesis and hydration of calcium aluminosulfate (Ca4Al6O16S). J Am Ceram Soc 85:535–539

    Article  Google Scholar 

  36. Goldman M, Grandinetti PJ, Llor A, Olejniczak Z, Sachleben JR, Zwanziger JW (1992) Theoretical aspects of higher-order truncations in solid-state nuclear magnetic resonance. J Chem Phys 97:8947–8960

    Article  Google Scholar 

  37. Amoureux JP, Fernandez C (1996) QUASAR—solid state NMR simulation for quadrupolar nuclei. University of Lille, France

    Google Scholar 

  38. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  39. Rawal A, Smith BJ, Athens GL, Edwards CL, Roberts L, Gupta V, Chmelka BF (2010) Molecular silicate and aluminate species in anhydrous and hydrated cements. J Am Chem Soc 132:7321–7337

    Article  Google Scholar 

  40. Mumme WG, Hill RJ, Bushnell-Wye G, Segnit ER (1995) Rietveld crystal structure refinements, crystal chemistry and calculated powder diffraction data for the polymorphs of dicalcium silicate and related phases. Neues Jahrbuch fuer Mineralogie. Abhandlungen 169(1):35–68

    Google Scholar 

  41. McCusker LB, Von Dreele RB, Cox DE, Louër D, Scardi P (1999) Rietveld refinement guidelines. J Appl Crystallogr 32:36–50

    Article  Google Scholar 

  42. Bruker AXS, TOPAS  V 2.0 (2003) General profile and structure analysis software for power diffraction data, User manual, Bruker AXS, Karlsruhe, Germany

  43. Jost KH, Ziemer B, Seydel R (1977) Redetermination of the structure of β-dicalcium silicate. Acta Crystallogr B 33:1696–1700

    Article  Google Scholar 

  44. Pedersen P, Semmingsen D (1982) Neutron diffraction refinement of the structure of gypsum, CaSO4.2H2O. Acta Crystallogr B 38:1074–1077

    Article  Google Scholar 

  45. Motzet H, Poellmann H (1998) Quantitative phase analysis of high alumina cements. Proceedings of the 20th international conference on cement microscopy, 187–206

  46. Hawthorne FC, Ferguson RB (1975) Anhydrous sulphates. II. Refinement of the crystal structure of anhydrite. Can Mineral 13:289–292

    Google Scholar 

  47. Goetz-Neunhoeffer F, Neubauer J (2006) Refined ettringite (Ca6Al2(SO4)3(OH)12·26H2O) structure for quantitative X-ray diffraction analysis. Powder Diffr 21(1):4–11

    Article  Google Scholar 

  48. Ramachandran VS, Paroli RM, Beaudoin JJ, Delgado AH (2002) Handbook of thermal analysis of construction materials. William Andrew, New York

    Google Scholar 

  49. Kloprogge JT, Ruan HD, Frost RL (2002) Thermal decomposition of bauxite minerals: infrared emission spectroscopy of gibbsite, boehmite and diaspore. J Mater Sci 37:1121–1129

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like acknowledge Dr. F. Benevelli (Bruker Italy) for her important support in the NMR spectra interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Allevi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allevi, S., Marchi, M., Scotti, F. et al. Hydration of calcium sulphoaluminate clinker with additions of different calcium sulphate sources. Mater Struct 49, 453–466 (2016). https://doi.org/10.1617/s11527-014-0510-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0510-5

Keywords

Navigation