Skip to main content
Log in

Plasticity-based criterion for confinement design of FRP jacketed concrete columns

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Fiber reinforced polymer confined concrete exhibits different stress–strain behavior under different confinement levels. Therefore, classification of confinement levels is often the first step of jacketing design. Currently, the classification criteria are empirical and strength-based. In this paper, a plasticity-based criterion for classification of confinement levels is developed in the framework of Drucker–Prager plasticity. The theoretically derived criterion is simple and can be conveniently used for engineering design. In addition, explicit relationships for calculating the strength and ductility ratios of FRP confined concrete columns are developed as functions of the confinement stiffness ratio and FRP rupture strain. These relationships can be conveniently used in the performance-based design of FRP jackets for concrete columns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mander JB, Priestley MJ, Park R (1988) Theoretical stress-strain model for confined concrete. J Struc Eng 114(8):1804–1826

    Article  Google Scholar 

  2. Spoelstra MR, Monti G (1999) FRP-confined concrete model. J Compos Constr 3(3):143–150

    Article  Google Scholar 

  3. Lam L, Teng JG (2003) Design-oriented stress–strain model for FRP-confined concrete. Constr Build Mater 17(6):471–489

    Article  Google Scholar 

  4. Wu G, Lu ZT, Wu ZS (2006) Strength and ductility of concrete cylinders confined with FRP composites. Constr Build Mater 20(3):134–148

    Article  Google Scholar 

  5. Wu G, Wu Z, Lu ZT, Ando YB (2006) Experimental study on concrete cylinders confined with various FRP under uniaxial compression. ACI SP 238:381–394

    Google Scholar 

  6. Pantelides CP, Yan Z (2007) Confinement model of concrete with externally bonded FRP jackets or posttensioned FRP shells. J Struct Eng 133(9):1288–1296

    Article  Google Scholar 

  7. Mirmiran A, Shahawy M, Samaan M, Echary HE, Mastrapa JC, Pico O (1998) Effect of column parameters on FRP-confined concrete. J Compos Constr 2(4):175–185

    Article  Google Scholar 

  8. Micelli F, Modarelli R (2013) Experimental and analytical study on properties affecting the behaviour of FRP-confined concrete. Compos Part B-Eng 45(1):1420–1431

    Article  Google Scholar 

  9. Pellegrino C, Modena C (2010) Analytical model for FRP confinement of concrete columns with and without internal steel reinforcement. J Compos Constr 14(6):693–705

    Article  Google Scholar 

  10. Rousakis TC, Karabinis AI (2012) Adequately FRP confined reinforced concrete columns under axial compressive monotonic or cyclic loading. Mater Struct 45(7):957–975

    Article  Google Scholar 

  11. Wu YF, Liu T, Oehlers DJ (2006) Fundamental principles that govern retrofitting of reinforced concrete columns by steel and FRP jacketing. Adv Struct Eng 9(4):507–533

    Article  Google Scholar 

  12. Xiao Y, Wu H (2003) Compressive behavior of concrete confined by various types of FRP composite jackets. J Reinf Plast Compos 22(13):1187–1201

    Article  Google Scholar 

  13. Xiao Y, Wu H (2000) Compressive behavior of concrete confined by carbon fiber composite jackets. J Mater Civ Eng 12:139–146

    Article  Google Scholar 

  14. Teng J, Jiang T, Lam L, Luo Y (2009) Refinement of a design-oriented stress–strain model for FRP-confined concrete. J Compos Constr 13:269–278

    Article  Google Scholar 

  15. Lee CS, Hegemier GA (2009) Model of FRP-confined concrete cylinders in axial compression. J Compos Constr 13(5):442–454

    Article  Google Scholar 

  16. Moran DA, Pantelides CP (2012) Elliptical and circular FRP-confined concrete sections: A Mohr-Coulomb analytical model. Int J Solids Struct 49:881–898

    Article  Google Scholar 

  17. Cui C (2009) Behaviour of normal and high strength concrete confined with fibre reinforced polymers (FRP). Ph.D. thesis, Department of Civil Engineering, University of Toronto, Toronto, Canada

  18. Csuka B, Kollár LP (2010) FRP-confined circular concrete columns subjected to concentric loading. J Reinf Plast Compos 29(23):3504–3520

    Article  Google Scholar 

  19. Shahawy M, Mirmiran A, Beitelman T (2000) Tests and modeling of carbon-wrapped concrete columns. Compos Part B-Eng 31(6):471–480

    Article  Google Scholar 

  20. Karabinis AI, Rousakis TC (2002) Concrete confined by FRP material: a plasticity approach. Eng Struct 24(7):923–932

    Article  Google Scholar 

  21. Yu T, Teng JG, Wong YL, Dong SL (2010) Finite element modeling of confined concrete-I: Drucker–Prager type plasticity model. Eng Struct 32(3):665–679

    Article  Google Scholar 

  22. Jiang JF, Wu YF (2014) Characterization of yield surfaces for confined concrete. J Eng Mech-ASCE 140(12):04014096

  23. Rousakis T (2013) Hybrid confinement of concrete by FRP sheets and fiber ropes under cyclic axial compressive loading. J Compos Constr 17(5):732–743

    Article  Google Scholar 

  24. Rousakis T (2014) Elastic fiber ropes of ultrahigh-extension capacity in strengthening of concrete through confinement. J Mater Civ Eng 26(1):34–44

    Article  Google Scholar 

  25. Samaan M, Mirmiran A, Shahawy M (1998) Model of concrete confined by fiber composites. J Struct Eng 124(9):1025–1031

    Article  Google Scholar 

  26. Binici B (2008) Design of FRPs in circular bridge column retrofits for ductility enhancement. Eng Struct 30(3):766–776

    Article  Google Scholar 

  27. Hu B (2008) An improved criterion for sufficiently/insufficiently FRP-confined concrete derived from ultimate axial stress. Eng Struct 46:431–446

    Article  Google Scholar 

  28. Chandler HW (1985) A plasticity theory without Drucker’s postulate, suitable for granular materials. J Mech Phys Solids 33(3):215–226

    Article  MATH  Google Scholar 

  29. Popovics S (1973) A numerical approach to the complete stress-strain curve of concrete. Cem Concr Res 3(5):583–599

    Article  Google Scholar 

  30. Mirmiran A, Shahawy M (1997) Dilation characteristics of confined concrete. Mech Cohesive-Frict Mater 2:237–249

    Article  Google Scholar 

  31. Teng JG, Huang YL, Lam L, Ye LP (2007) Theoretical model for fiber-reinforced polymer-confined concrete. J Compos Constr 11:201–210

    Article  Google Scholar 

  32. Samani AK, Attard MM (2014) Lateral strain model for concrete under compression. ACI Struct J 111(2):441–452

    Google Scholar 

  33. Teng JG, Yu T, Wong Y, Dong S (2007) Hybrid FRP–concrete–steel tubular columns: concept and behavior. Constr Build Mater 21(4):846–854

    Article  Google Scholar 

  34. Jiang T, Teng JG (2007) Analysis-oriented stress–strain models for FRP–confined concrete. Eng Struct 29(11):2968–2986

    Article  Google Scholar 

  35. Wu YF, Jiang JF (2013) Effective strain of FRP for confined circular concrete columns. Compos Struct 95:479–491

    Article  Google Scholar 

  36. Jiang JF, Wu YF (2012) Identification of material parameters for Drucker–Prager plasticity model for FRP confined circular concrete columns. Int J Solids Struct 49(3):445–456

    Article  Google Scholar 

  37. Jiang JF, Wu YF (2011) A modeling and experimental study of concrete columns highly confined by carbon fibre reinforced polymer sheets. In: Proceedings of the 13th international conference on civil, structural and enviromental engineering computing, Hania, Greece; 6–9 Spetember 2011, Paper 54

  38. Wu YF (2004) The effect of longitudinal reinforcement on the cyclic shear behavior of glass fiber reinforced gypsum wall panels: tests. Eng Struct 26(11):1633–1646

    Article  Google Scholar 

  39. Priestley MJN (1996) Performance based seismic design. Bull NZ Soc Earthq Eng 33(3):325–346

    Google Scholar 

  40. American Concrete Institute (ACI) (2008) Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures. ACI 440.2R-08, Farmington Hills

    Google Scholar 

  41. Aire C, Gettu R, Casas JR (2001) Study of the compressive behaviour of concrete confined by fiber reinforced composites. In: Proceedings of the international conference composites in constructions, Porto, Portugal; 10–12 October 2001, pp 239–243

  42. Almusallam TH (2007) Behaviour of normal and high-strength concrete cylinders confined with E-glass/epoxy composite laminates. Compos Part B Eng 38(5):629–639

    Article  Google Scholar 

  43. Arduini M, Di Tommaso A, Manfroni O, Ferrari S, Romagnolo M (1999) II Confinamento passivo di elementi compressi in calcestruzzo con fogli di materiale composito. Industria Italiana del Cemento 11:836–884 (in Italian)

    Google Scholar 

  44. Benzaid R, Mesbah H, Chikh N (2010) FRP-confined concrete cylinders: axial compression experiments and strength model. J Reinf Plast Compos 29(16):2469–2488

    Article  Google Scholar 

  45. Berthet J, Ferrier E, Hamelin P (2005) Compressive behavior of concrete externally confined by composite jackets. Part A: experimental study, Constr Build Mater 19(3):223–232

    Google Scholar 

  46. Bortolotti L, Lai S, Carta S, Cireddu D (1999) Comportamento a carico assiale di conglomerati ad alta resistenza confinati con tessuto di fibra di carbonio. In: Proceedings of the atti delle giornate AICAP conference, Turin, Italia, (in Italian)

  47. Bullo S (2003) Experimental study of the effects of the ultimate strain of fiber reinforced plastic jackets on the behavior of confined concrete. In: Proceedings of the international conference composites in construction, Cosenza, Italy; 16–19 September 2003, pp 465–470

  48. Carey SA, Harries KA (2005) Axial behavior and modeling of confined small-, medium-, and large-scale circular sections with carbon fiber-reinforced polymer jackets. ACI Struct J 102(4):596–604

    Google Scholar 

  49. Dai JG, Bai YL, Teng JG (2011) Behavior and modeling of concrete confined with frp composites of large deformability. J Compos Constr 15(6):963–973

    Article  Google Scholar 

  50. De Lorenzis L, Micelli F, La Tegola A (2002) Influence of specimen size and resin type on the behavior of FRP confined concrete cylinders. In: Proceedings of the 1st international conference advanced polymer composites for structural applications in construction, London, UK; 15–17 April 2002, pp 231–239

  51. Faella C, Realfonzo R, Salerno N (2004) Sulla resistenza e deformazione di elementi in c.a. confinati con tessuti in FRP. In: Proceedings of the XI national congress “L’ ingegneria sismica in Italia”, Genova, Italia, (in Italian)

  52. Harries KA, Carey SA (2003) Shape and “gap” effects on the behavior of variably confined concrete. Cem Concr Res 33(6):881–890

    Article  Google Scholar 

  53. Harries KA, Kharel G (2002) Behavior and modeling of concrete subject to variable confining pressure. ACI Mater J 99(2):180–189

    Google Scholar 

  54. Lam L, Teng JG (2004) Ultimate condition of fiber reinforced polymer-confinedconcrete. J Compos Constr 8(6):539–548

    Article  Google Scholar 

  55. Lam L, Teng JG, Cheung CH, Xiao Y (2006) FRP–confined concrete under axial cyclic compression. Cem Concr Compos 28(10):949–958

    Article  Google Scholar 

  56. Lin CT, Li YF (2003) An effective peak stress formula for concrete confined with carbon fiber reinforced plastics. Can J Civ Eng 30(5):882–889

    Article  Google Scholar 

  57. Miyauchi K, Nishibayashi S, Inoue S (1997) Estimation of strengthening effects with carbon fiber sheet for concrete column. In: Proceedings of the 3rd international symposium on FRP reinforcement for concrete structures, Japan Concrete Institute, Sapporo, Japan, 14–16 October 1997, pp 217–224

  58. Modarelli R, Micelli F, Manni O (2005) FRP-confinement of hollow concrete cylinders and prisms. In: Proceedings of the 7th International Symposium on FRP reinforcement for reinforced concrete structures, Kansas City, Missouri, 6–9 November 2005, pp 1–18

  59. Picher F, Rochette P, Labossière P (1996) Confinement of concrete cylinders with CFRP. In: Proceedings of the 1st international conference on composites for infrastructures, Tuscon, USA; 15–17 January 1996, pp 829–841

  60. Rochette P, Labossière P (2000) Axial testing of rectangular column models confined with composites. J Compos Constr 4:129–136

    Article  Google Scholar 

  61. Rousakis TC (2001) Experimental investigation of concrete cylinders confined by carbon FRP sheets, under monotonic and cyclic axial compressive load. Research Report Chalmers University of Technology, Göteborg, Sweden,

  62. Rousakis TC, You CS, De Lorenzis L, Tamuzs V, Tepfers R (2003) Concrete cylinders confined by carbon FRP sheets subjected to monotonic and cyclic axial compressive load. In: Proceedings of the 6th international symposium on FRP reinforcement for concrete, Singapore; 8–10 July 2003, pp 571–580

  63. Shehata IAEM, Carneiro LAV, Shehata LCD (2002) Strength of short concrete columns confined with CFRP sheets. Mater Struct 35(1):50–58

    Article  Google Scholar 

  64. Silva MA, Rodrigues CC (2006) Size and relative stiffness effects on compressive failure of concrete columns wrapped with glass FRP. J Mater Civ Eng 18(3):334–342

    Article  Google Scholar 

  65. Thériault M, Neale KW, Claude S (2004) Fiber-reinforced polymer-confined circular concrete columns: investigation of size and slenderness effects. J Compos Constr 8(4):323–331

    Article  Google Scholar 

  66. Valdmanis V, De Lorenzis L, Rousakis T, Tepfers R (2007) Behaviour and capacity of CFRP-confined concrete cylinders subjected to monotonic and cyclic axial compressive load. Struct Concr 8(4):87–90

    Article  Google Scholar 

  67. Vincent T, Ozbakkaloglu T (2013) Influence of concrete strength and confinement method on axial compressive behavior of FRP confined high- and ultra high strength concrete. Compos Part B Eng 50:413–428

    Article  Google Scholar 

  68. Vincent T, Ozbakkaloglu T (2013) Influence of fiber orientation and specimen endcondition on axial compressive behavior of FRP-confined concrete. Constr Build Mater 47:814–826

    Article  Google Scholar 

  69. Wang LM, Wu YF (2008) Effect of corner radius on the performance of CFRP-confined square concrete columns: test. Eng Struct 30(2):493–505

    Article  Google Scholar 

  70. Wu G, Wu ZS, Lu ZT, Ando YB (2008) Structural performance of concrete confined with hybrid FRP composites. J Reinf Plast Compos 27(12):1323–1348

    Article  Google Scholar 

  71. Zhang S, Ye L, Mai YW (2000) A study on polymer composite strengthening systems for concrete columns. Appl Compos Mater 7(2–3):125–138

    Article  Google Scholar 

  72. Bisby LA, Dent AJS, Green MF (2005) Comparison of confinement models for fiber-reinforced polymer-wrapped concrete. ACI Struct J 102(1):62–72

    Google Scholar 

Download references

Acknowledgments

The work described in this paper was fully supported by the National Natural Science Foundation of China (Grant No. 51308404), the Fundamental Research Funds for the Central Universities, China (Grant No. 2013KJ042) and a grant from the Construction Industry Council of the Hong Kong Special Administrative Region, China (Project No. 9231153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Fei Wu.

Appendices

Appendix A

Under the framework of DP plasticity, there are two fundamental components, that is, the yield function

$$F = \sqrt {3J_{2} } - \tan \varphi \frac{{I_{1} }}{3} - k = 0$$
(20)

and the plastic potential function

$$G = \sqrt {3J_{2} } - \tan \beta \frac{{I_{1} }}{3} + {\text{constant}}$$
(21)

where I 1 is the 1st invariant of the stress tensor and J 2 is the 2nd invariant of the deviatoric stress tensor; φ, k, and β are the material properties of the friction angle, cohesion and plastic dilation angle, respectively. Under the flow rule, one has

$${\text{d}}\varepsilon_{i}^{\text{p}} = {\text{d}}\lambda \frac{\partial G}{{\partial \sigma_{i} }} = {\text{d}}\lambda \left( {\frac{\sqrt 3 }{{6\sqrt {J_{2} } }}(2\sigma_{i} - (\sigma_{j} + \sigma_{k} )) - \frac{\tan \beta }{3}} \right)\,\,\,\,(i = 1,2,3,j = 2,3,1,k = 3,2,1)$$
(22)

where dλ is a non-negative scalar accounting for the magnitude of plastic shear strain increment.

Taking normalization, the plastic work increment can be written as follows

$${\text{d}}\bar{W}_{\text{p}} = \sum {\bar{\sigma }_{i} {\text{d}}\varepsilon_{i}^{\text{p}} = \bar{\sigma }_{1} {\text{d}}\varepsilon_{1}^{\text{p}} + \bar{\sigma }_{2} {\text{d}}\varepsilon_{2}^{\text{p}} + \bar{\sigma }_{3} {\text{d}}\varepsilon_{3}^{\text{p}} }$$
(23)

where the note “–” denotes the value normalized by f c.

Substituting Eq. (22) into Eq. (23), one has

$$\begin{aligned} {\text{d}}\bar{W}_{\text{p}} = \sum\limits_{i = 1}^{3} {\bar{\sigma }_{i} {\text{d}}\lambda \frac{\partial G}{{\partial \sigma_{i} }} = {\text{d}}\lambda [\left( {\frac{{\sqrt 3 \bar{\sigma }_{1} }}{{6\sqrt {J_{2} } }}[2\bar{\sigma }_{1} - (\bar{\sigma }_{2} + \bar{\sigma }_{3} )] - \frac{\tan \beta }{3}\bar{\sigma }_{1} } \right)} \hfill \\ + \;\left( {\frac{{\sqrt 3 \bar{\sigma }_{2} }}{{6\sqrt {J_{2} } }}[2\bar{\sigma }_{2} - (\bar{\sigma }_{1} + \bar{\sigma }_{3} )] - \frac{\tan \beta }{3}\bar{\sigma }_{2} } \right) + \left( {\frac{{\sqrt 3 \bar{\sigma }_{3} }}{{6\sqrt {J_{2} } }}[2\bar{\sigma }_{3} - (\bar{\sigma }_{1} + \bar{\sigma }_{2} )] - \frac{\tan \beta }{3}\bar{\sigma }_{3} } \right)] \hfill \\ = {\text{d}}\lambda \frac{\sqrt 3 }{{\sqrt {J_{2} } }}(\frac{1}{6}((\bar{\sigma }_{1} - \bar{\sigma }_{2} )^{2} + (\bar{\sigma }_{2} - \bar{\sigma }_{3} )^{2} + (\bar{\sigma }_{3} - \bar{\sigma }_{1} )^{2} )) + {\text{d}}\lambda \tan \beta \sum\limits_{i = 1}^{3} {\frac{{\bar{\sigma }_{1} }}{3}} \hfill \\ = {\text{d}}\lambda \sqrt {3\bar{J}_{2} } - {\text{d}}\lambda \tan \beta \frac{{\bar{I}_{1} }}{3} \hfill \\ \end{aligned}$$
(24)

Adopting the yield function Eq. (20), Eq. (24) can be rewritten to

$${\text{d}}\bar{W}_{\text{p}} = {\text{d}}\lambda \left( {\frac{{\bar{I}_{1} }}{3}\tan \varphi + \bar{k} - \tan \beta \frac{{\bar{I}_{1} }}{3}} \right)$$
(25)

Let hydrostatic pressure p = I 1/3 and axial plastic strain dɛ p1  = αdλ, one has

$$\bar{W}_{\text{p}}^{\prime} = \frac{{{\text{d}}\bar{W}_{\text{p}} }}{\alpha \cdot {\text{d}}\lambda } = \frac{(\tan \varphi - \tan \beta )}{\alpha } \bar{p} + \frac{{\bar{k}}}{\alpha }$$
(26)

where parameter α can be determined in the case of uniaxial compression, when it has \(\bar{\sigma }_{ 1} = \bar{\sigma }_{\text{c}}\), and \(\bar{\sigma }_{ 2} = \bar{\sigma }_{ 3} = 0\). And the Drucker–Prager yield function can be expressed as follows

$$F = \bar{\sigma }_{c} - \tan \varphi \frac{{\bar{\sigma }_{c} }}{3} - \bar{k} = 0$$
(27)

It yields

$$\bar{k} = \bar{\sigma }_{c} - \tan \varphi \frac{{\bar{\sigma }_{c} }}{3}$$
(28)

Substituting Eq. (28) into Eq. (26), the plastic work modulus has the from for the case of uniaxial compression

$$\bar{W}_{\text{p}}^{\prime} = \frac{{(\tan \varphi - \tan \beta )\frac{{\bar{\sigma }_{c} }}{3} + \bar{\sigma }_{c} - \tan \varphi \frac{{\bar{\sigma }_{c} }}{3}}}{\alpha } = \frac{{1 - \frac{\tan \beta }{3}}}{\alpha }\bar{\sigma }_{c}$$
(29)

Since \({\text{d}}\bar{W}_{\text{p}} = \bar{\sigma }_{\text{c}} {\text{d}}\varepsilon_{\text{c}}^{\text{p}}\) in uniaxial case, \(\bar{W}_{\text{p}}^{\prime}\) can also be expressed as

$$\bar{W}_{\text{p}}^{\prime} = \frac{{{\text{d}}\bar{W}_{\text{p}} }}{{{\text{d}}\varepsilon_{c}^{\text{p}} }} = \bar{\sigma }_{c}$$
(30)

the equality between Eq. (29) and Eq. (30) gives

$$\alpha = 1 - \frac{\tan \beta }{3}$$
(31)

Appendix B

See Fig. 9.

Fig. 9
figure 9

Characteristic curves for β and φ

The parameter tanΦ is the function of the plastic dilation angle β and friction angle φ

$$\tan \Phi = \frac{\tan \varphi - \tan \beta }{{1 - \frac{\tan \beta }{3}}}$$
(32)

The characteristic curves of β and φ are illustrated in Fig. 9 by converting the equivalent plastic strain \(\tilde{\varepsilon }^{\text{p}}\) into ɛ p1 for φ. The conversion can be achieved through incremental computation at a fixed ρ (See Appendix C). As the range of β is from 61.32° to −41.30°, the denominator ranges from 0.39 to 1.29, remaining in positive. And the sign of tanΦ is governed by the relative value (tanφ–tanβ). Therefore the requirement tanΦ ≥ 0 can be guaranteed by the local extremum Φmin ≥ 0, which is determined by the inequality as follows:

$$\left. {\beta_{\hbox{max} } \le \varphi } \right|_{{\varepsilon_{1}^{\text{p}} = \varepsilon_{\text{cr}}^{\text{p}} }}$$
(33)
$$\beta_{\hbox{max} } = \frac{ - 63.15\rho + 7268}{\rho + 113}.[37]$$
(33a)
$$\varepsilon_{\text{cr}}^{\text{p}} = \frac{0.00044\rho + 0.087}{\rho + 19.31}.[37]$$
(33b)

where ɛ pcr , the axial plastic strain corresponding to β max. It yields ρ ≥ 9.8 for tanΦ > 0. When ρ < 9.8, φ develops to be smaller than β after its peak β max (Fig. 9). Since β and φ monotonically decrease to the asymptotic value, the negative sign of tanΦ afterwards can be ensured by the inequality as follows:

$$\beta_{\text{u}} (\rho ) = \frac{ - 41.30\rho + 1146}{\rho + 18.38} \le \varphi_{\text{r}} = 42.20$$
(34)

where β μ and φ r are the asymptotic values. It gives ρ ≤ 4.5 for tanΦ < 0 after its extremum. And for the ratio ρ in the range of 4.5 < ρ < 9.8, tanΦ will increase from negative to positive one.

For the parameter \(\bar{K}\)

$$\bar{K} = \frac{{\bar{k}}}{{1 - \frac{\tan \beta }{3}}}$$
(35)

its post-peak behavior is monotonically developed. And hence the zero value of derivative of \(\bar{K}\) at any ɛ p1 larger than ɛ pcr can confirm \(\bar{K}^{\prime} = 0\). The boundary value to classify the “hardening” and “softening” in \(\bar{K}\) can be obtained by setting

$$ \bar{K}^{\prime}\left|_{_{\varepsilon_{1}^{\text{p}} \to \varepsilon_{\text{cu}}^{\text{p}}}}\right. \left. { = \frac{1}{\alpha}\frac{{{\text{d}}\bar{k}}}{{{\text{d}}\varepsilon_{1}^{\text{p}}}}}\right|_{{\varepsilon_{1}^{\text{p}} \to \varepsilon_{\text{cu}}^{\text{p}}} }\left. { - \frac{{\bar{k}}}{{\alpha^{2} }}\frac{{{\text{d}}\alpha}}{{{\text{d}}\varepsilon_{1}^{\text{p}} }}} \right|_{{\varepsilon_{1}^{\text{p}} \to \varepsilon_{\text{cu}}^{\text{p}} }} \left. { = \frac{1}{\alpha }\frac{{{\text{d}}\bar{k}}}{{{\text{d}}\varepsilon_{1}^{\text{p}} }}} \right|_{{\varepsilon_{1}^{\text{p}} \to \varepsilon_{\text{cu}}^{\text{p}} }} \left. { + \frac{{\bar{k}}}{{\alpha^{2} }}\frac{{{\text{d}}\!\tan\beta }}{{3{\text{d}}\varepsilon_{ 1}^{\text{p}} }}} \right|_{{\varepsilon_{ 1}^{\text{p}} \to \varepsilon_{\text{cu}}^{\text{p}} }} = 0 $$
(36)

where ɛ pcu is plastic axial strain when β = β μ. The plastic dilation angle can approach to constant value β μ before failure if FRP has enough elongation capacity (Fig. 9), it has

$$\left. {\frac{{{\text{d}}\!\tan \,\beta }}{{{\text{d}}\varepsilon_{ 1}^{\text{p}} }}} \right|_{{\varepsilon_{ 1}^{\text{p}} \to \varepsilon_{\text{cu}}^{\text{p}} }} = 0$$
(37)

And then the equilibrium Eq. (36) can be further expressed as

$$\bar{K}^{\prime}\Big|_{{\varepsilon_{1}^{\text{p}} \to \varepsilon_{\text{cu}}^{\text{p}} }}=\frac{1}{\alpha }\frac{{{\text{d}}\bar{k}}}{{{\text{d}}\varepsilon_{1}^{\text{p}} }} \Big|_{{\varepsilon_{1}^{\text{p}} \to \varepsilon_{\text{cu}}^{\text{p}} }} = 0$$
(38)

Determined by the normalized cohesion \(\bar{k}\), the first order derivation with respect to ɛ p1 goes to

$$\left. {\frac{{{\text{d}}\bar{k}}}{{{\text{d}}\varepsilon_{ 1}^{\text{p}} }}} \right|_{{\varepsilon_{ 1}^{\text{p}} \to \varepsilon_{\text{cu}}^{\text{p}} }} \left. ={\left( {\frac{{E_{\text{p}} \tilde{\varepsilon }^{p} }}{{1 + \eta \tilde{\varepsilon }^{\text{p}} }}} \right)^{\prime } \frac{{{\text{d}}\tilde{\varepsilon }^{\text{p}} }}{{{\text{d}}\varepsilon_{1}^{\text{p}} }}} \right|_{{\varepsilon_{ 1}^{\text{p}} \to \varepsilon_{\text{cu}}^{\text{p}} }} \left. { + \;2\tilde{\varepsilon }^{\text{p}} \zeta (\rho )\frac{{{\text{d}}\tilde{\varepsilon }^{\text{p}} }}{{{\text{d}}\varepsilon_{ 1}^{\text{p}} }}} \right|_{{\varepsilon_{ 1}^{\text{p}} \to \varepsilon_{\text{cu}}^{\text{p}} }}$$
(39)

Under the current regulation of E p and η, the rational function \(\frac{{E_{\text{p}} \tilde{\varepsilon }^{\text{p}} }}{{1 + \eta \tilde{\varepsilon }^{\text{p}} }}\) monotonically increases towards its limit value, 0.41, when taking infinity of \(\tilde{\varepsilon }^{\text{p}}\). When \(\tilde{\varepsilon }^{\text{p}} \ge 0.01\), the difference to its limit already turns to be as minor as 1 %. As \(\tilde{\varepsilon }_{1}^{\text{p}} < \tilde{\varepsilon }^{\text{p}} \le 0.0 1\), the corresponding value for \(\tilde{\varepsilon }_{1}^{\text{p}}\) is far from reaching ɛ pcu (Fig. 4a). So its first item in Eq. (39) can be neglected in the current analysis range, that is,

$$\bar{K}^{\prime}\left|_{_{\varepsilon_{1}^{\text{p}} \to \varepsilon_{\text{cu}}^{\text{p}}}} {= \frac{{2\tilde{\varepsilon }^{\text{p}} }}{\alpha}\frac{{{\text{d}}\tilde{\varepsilon }^{\text{p}}}}{{{\text{d}}\varepsilon_{ 1}^{\text{p}} }}} \right|_{{\varepsilon_{ 1}^{\text{p}} \to \varepsilon_{\text{cu}}^{\text{p}} }} \zeta (\rho ) = 0$$
(40)

where

$$\zeta (\rho ) = 277 - 650.1\exp ( - 0.083\rho )$$
(41)

Therefore, zero value of \(\bar{K}^{\prime}\) is determined by the function ζ. It gives the boundary value for ρ to be 10.3. When ρ > 10.3, \(\bar{K}^{\prime} > 0\); otherwise, \(\bar{K}^{\prime} < 0\) after reaching the extremum of \(\bar{K}\).

Appendix C

The equivalent plastic strain \(\tilde{\varepsilon }^{\text{p}}\) is defined as the norm of plastic strain tensor. Its increments has the following form in the case of concrete under uniform confinement

$${\text{d}}\tilde{\varepsilon }^{\text{p}} = \sqrt {{\text{d}}\varepsilon_{\text{1}}^{\text{p}} \cdot {\text{d}}\varepsilon_{\text{1}}^{\text{p}} + 2{\text{d}}\varepsilon_{ l}^{\text{p}} \cdot {\text{d}}\varepsilon_{ l}^{\text{p}} } = \sqrt {1 + 2\left( {\frac{{{\text{d}}\varepsilon_{ l}^{\text{p}} }}{{{\text{d}}\varepsilon_{\text{c}}^{\text{p}} }}} \right)^{2} } {\text{d}}\varepsilon_{\text{1}}^{\text{p}}$$
(42)

where the footnote “1” and “l” denote the axial direction and lateral direction.

Following the flow rule (Eq. 22), it has

$${\text{d}}\varepsilon_{\text{1}}^{\text{p}} = {\text{d}}\lambda \left( {\frac{\sqrt 3 }{{2\sqrt {\frac{{(\sigma_{\text{1}} - \sigma_{l} )^{2} }}{3}} }}2\frac{{(\sigma_{\text{1}} - \sigma_{l} )}}{3} + \frac{\tan \,\beta }{3}} \right) = {\text{d}}\lambda \left( { - 1 + \frac{\tan \,\beta }{3}} \right)$$
(43)
$${\text{d}}\varepsilon_{{1}}^{\text{p}} = {\text{d}}\lambda \left( {\frac{\sqrt 3 }{{2\sqrt {\frac{{(\sigma_{\text{1}} - \sigma_{l} )^{2} }}{3}} }}\frac{{(\sigma_{l} - \sigma_{1} )}}{3} + \frac{\tan \,\beta }{3}} \right) = {\text{d}}\lambda \left( {\frac{1}{2} + \frac{\tan \,\beta }{3}} \right)$$
(44)

It can resolve the ratio of lateral plastic strain-to-axial plastic strain

$$\frac{{{\text{d}}\varepsilon_{ l}^{\text{p}} }}{{{\text{d}}\varepsilon_{\text{1}}^{\text{p}} }} = \frac{2\,\tan \,\beta + 3}{2\,\tan \,\beta - 6}$$
(45)

Substituting Eq. (45) into Eq. (42), one has

$${\text{d}}\tilde{\varepsilon }^{\text{p}} = \sqrt {{\text{d}}\varepsilon_{\text{1}}^{\text{p}} \cdot {\text{d}}\varepsilon_{\text{1}}^{\text{p}} + 2{\text{d}}\varepsilon_{ l}^{\text{p}} \cdot {\text{d}}\varepsilon_{ l}^{\text{p}} } = \sqrt {1 + 2\left( {\frac{2\tan \beta + 3}{2\tan \beta - 6}} \right)^{2}} {\text{d}}\varepsilon_{\text{1}}^{\text{p}}$$
(46)

When the ratio ρ is fixed, the function of β (Table 3) can tell the value of tanβ at one fixed ɛ pc . And hence \(\tilde{\varepsilon }^{\text{p}}\) can be converted into ɛ 1 p by incremental computation with the initial condition \(\varepsilon_{\text{1,0}}^{\text{p}} = \tilde{\varepsilon }_{0}^{\text{p}} = 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, JF., Wu, YF. Plasticity-based criterion for confinement design of FRP jacketed concrete columns. Mater Struct 49, 2035–2051 (2016). https://doi.org/10.1617/s11527-015-0632-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-015-0632-4

Keywords

Navigation