Skip to main content
Log in

Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Multi-technique characterisation of sodium carbonate-activated blast furnace slag binders was conducted in order to determine the influence of the carbonate groups on the structural and chemical evolution of these materials. At early age (<4 days) there is a preferential reaction of Ca2+ with the CO3 2− from the activator, forming calcium carbonates and gaylussite, while the aluminosilicate component of the slag reacts separately with the sodium from the activator to form zeolite NaA. These phases do not give the high degree of cohesion necessary for development of high early mechanical strength, and the reaction is relatively gradual due to the slow dissolution of the slag under the moderate pH conditions introduced by the Na2CO3 as activator. Once the CO3 2− is exhausted, the activation reaction proceeds in similar way to an NaOH-activated slag binder, forming the typical binder phases calcium aluminium silicate hydrate and hydrotalcite, along with Ca-heulandite as a further (Ca,Al)-rich product. This is consistent with the significant gain in compressive strength and reduced porosity observed after 3 days of curing. The high mechanical strength and reduced permeability developed in these materials beyond 4 days of curing elucidate that Na2CO3-activated slag can develop desirable properties for use as a building material, although the slow early strength development is likely to be an issue in some applications. These results suggest that the inclusion of additions which could control the preferential consumption of Ca2+ by the CO3 2− might accelerate the reaction kinetics of Na2CO3-activated slag at early times of curing, enhancing the use of these materials in engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. van Deventer JSJ, Provis JL, Duxson P (2012) Technical and commercial progress in the adoption of geopolymer cement. Miner Eng 29:89–104

    Article  Google Scholar 

  2. Provis JL, van Deventer JSJ (2014) Alkali-activated materials: state-of-the-art report RILEM TC 224-AAM. Springer, Dordrecht

    Book  Google Scholar 

  3. Provis JL (2014) Green concrete or red herring? – the future of alkali-activated materials. Adv Appl Ceram. doi:10.1179/1743676114Y.0000000177

  4. Provis JL (2014) Geopolymers and other alkali activated materials - Why, how, and what? Mater Struct 47(1):11–25

    Article  Google Scholar 

  5. Wang S-D, Pu X-C, Scrivener KL, Pratt PL (1995) Alkali-activated slag cement and concrete: a review of properties and problems. Adv Cem Res 7(27):93–102

    Article  Google Scholar 

  6. Puertas F (1995) Cementos de escoria activados alcalinamente: situación actual y perspectivas de futuro. Mater Constr 45(239):53–64

    Article  Google Scholar 

  7. Juenger MCG, Winnefeld F, Provis JL, Ideker J (2011) Advances in alternative cementitious binders. Cem Concr Res 41(12):1232–1243

    Article  Google Scholar 

  8. Duxson P, Provis JL (2008) Designing precursors for geopolymer cements. J Am Ceram Soc 91(12):3864–3869

    Article  Google Scholar 

  9. Shi C, Krivenko PV, Roy DM (2006) Alkali-Activated Cements and Concretes. Taylor & Francis, Abingdon

    Book  Google Scholar 

  10. Provis JL, Bernal SA (2014) Geopolymers and related alkali-activated materials. Annu Rev Mater Res 44(1):299–327

  11. Wang SD, Scrivener KL, Pratt PL (1994) Factors affecting the strength of alkali-activated slag. Cem Concr Res 24(6):1033–1043

    Article  Google Scholar 

  12. Živica V (2007) Effects of type and dosage of alkaline activator and temperature on the properties of alkali-activated slag mixtures. Constr Build Mater 21(7):1463–1469

    Article  Google Scholar 

  13. Fernández-Jiménez A, Puertas F (2003) Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements. Adv Cem Res 15(3):129–136

    Article  Google Scholar 

  14. Shi C, On the state and role of alkalis during the activation of alkali-activated slag cement. In: Proceedings of the 11th International Congress on the Chemistry of Cement, Durban, South Africa, 2003

  15. Song S, Sohn D, Jennings HM, Mason TO (2000) Hydration of alkali-activated ground granulated blast furnace slag. J Mater Sci 35:249–257

    Article  Google Scholar 

  16. Zhou H, Wu X, Xu Z, Tang M (1993) Kinetic study on hydration of alkali-activated slag. Cem Concr Res 23(6):1253–1258

    Article  Google Scholar 

  17. Puertas F, Martínez-Ramírez S, Alonso S, Vázquez E (2000) Alkali-activated fly ash/slag cement. Strength behaviour and hydration products. Cem Concr Res 30:1625–1632

    Article  Google Scholar 

  18. Ben Haha M, Le Saout G, Winnefeld F, Lothenbach B (2011) Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem Concr Res 41(3):301–310

    Article  Google Scholar 

  19. Kashani A, Provis JL, Qiao GG, van Deventer JSJ (2014) The interrelationship between surface chemistry and rheology in alkali activated slag paste. Constr Build Mater 65:583–591

  20. Krivenko PV (1994) Alkaline cements. In: Krivenko PV (ed) Proceedings of the first international conference on alkaline cements and concretes. VIPOL Stock Company, Kiev, pp 11–129

    Google Scholar 

  21. Xu H, Provis JL, van Deventer JSJ, Krivenko PV (2008) Characterization of aged slag concretes. ACI Mater J 105(2):131–139

    Google Scholar 

  22. Provis JL, Duxson P, Kavalerova E, Krivenko PV, Pan Z, Puertas F, van Deventer JSJ (2014) Historical aspects and overview. In: Provis JL, van Deventer JSJ (eds) Alkali-activated materials: state-of-the-art report, RILEM TC 224-AAM. Dordrecht, Springer, pp 11–57

    Chapter  Google Scholar 

  23. Provis JL, Brice DG, Buchwald A, Duxson P, Kavalerova E, Krivenko PV, Shi C, van Deventer JSJ, Wiercx JALM (2014) Demonstration projects and applications in building and civil infrastructure. In: Provis JL, van Deventer JSJ (eds) Alkali-activated materials: state-of-the-art report, RILEM TC 224-AAM. Dordrecht, Springer, pp 309–338

    Chapter  Google Scholar 

  24. Moseson AJ, Moseson DE, Barsoum MW (2012) High volume limestone alkali-activated cement developed by design of experiment. Cem Concr Compos 34(3):328–336

    Article  Google Scholar 

  25. Sakulich AR, Miller S, Barsoum MW (2010) Chemical and microstructural characterization of 20-month-old alkali-activated slag cements. J Am Ceram Soc 93(6):1741–1748

    Google Scholar 

  26. Moseson AJ. (2011) Design and implementation of alkali activated cement for sustainable development. Ph.D. Thesis, Drexel University

  27. Bai Y, Collier N, Milestone N, Yang C (2011) The potential for using slags activated with near neutral salts as immobilisation matrices for nuclear wastes containing reactive metals. J Nucl Mater 413(3):183–192

    Article  Google Scholar 

  28. Bakharev T, Sanjayan JG, Cheng Y-B (1999) Alkali activation of Australian slag cements. Cem Concr Res 29(1):113–120

    Article  Google Scholar 

  29. Fernández-Jiménez A, Puertas F (2001) Setting of alkali-activated slag cement. Influence of activator nature. Adv Cem Res 13(3):115–121

    Article  Google Scholar 

  30. Duran Atiş C, Bilim C, Çelik Ö, Karahan O (2009) Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater 23(1):548–555

    Article  Google Scholar 

  31. Fernández-Jiménez A, Puertas F, Sobrados I, Sanz J (2003) Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator. J Am Ceram Soc 86(8):1389–1394

    Article  Google Scholar 

  32. Wang YX, De Carlo F, Mancini DC, McNulty I, Tieman B, Bresnahan J, Foster I, Insley J, Lane P, von Laszewski G, Kesselman C, Su MH, Thiebaux M (2001) A high-throughput x-ray microtomography system at the Advanced Photon Source. Rev Sci Instrum 72(4):2062–2068

    Article  Google Scholar 

  33. Provis JL, Myers RJ, White CE, Rose V, van Deventer JSJ (2012) X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cem Concr Res 42(6):855–864

    Article  Google Scholar 

  34. Fernandez-Jimenez A, Puertas F, Arteaga A (1998) Determination of kinetic equations of alkaline activation of blast furnace slag by means of calorimetric data. J Thermal Anal Calorim 52(3):945–955

    Article  Google Scholar 

  35. Bernal SA, San Nicolas R, Myers RJ, Mejía de Gutiérrez R, Puertas F, van Deventer JSJ, Provis JL (2014) MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cem Concr Res 57:33–43

    Article  Google Scholar 

  36. Ben Haha M, Lothenbach B, Le Saout G, Winnefeld F (2011) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag – Part I: effect of MgO. Cem Concr Res 41(9):955–963

    Article  Google Scholar 

  37. Bernal SA, Provis JL, Walkley B, San Nicolas R, Gehman J, Brice DG, Kilcullen A, Duxson P, van Deventer JSJ (2013) Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem Concr Res 53:127–144

    Article  Google Scholar 

  38. Bernal SA, Provis JL, Brice DG, Kilcullen A, Duxson P, van Deventer JSJ (2012) Accelerated carbonation testing of alkali-activated binders significantly underestimate the real service life: the role of the pore solution. Cem Concr Res 42(10):1317–1326

    Article  Google Scholar 

  39. Sun GK, Young JF, Kirkpatrick RJ (2006) The role of Al in C-S-H: NMR, XRD, and compositional results for precipitated samples. Cem Concr Res 36(1):18–29

  40. Bernal SA, San Nicolas R, Provis JL, Mejía de Gutiérrez R, van Deventer JSJ (2014) Natural carbonation of aged alkali-activated slag concretes. Mater Struct 47(4):693–707

  41. Escalante-Garcia J, Fuentes AF, Gorokhovsky A, Fraire-Luna PE, Mendoza-Suarez G (2003) Hydration products and reactivity of blast-furnace slag activated by various alkalis. J Am Ceram Soc 86(12):2148–2153

    Article  Google Scholar 

  42. Bernal SA, Provis JL, Mejía de Gutiérrez R, van Deventer JSJ (2014) Accelerated carbonation testing of alkali-activated slag/metakaolin blended concretes: effect of exposure conditions. Mater Struct. doi:10.1617/s11527-014-0289-4

  43. Le Saoût G, Ben Haha M, Winnefeld F, Lothenbach B (2011) Hydration degree of alkali-activated slags: A 29Si NMR study. J Am Ceram Soc 94(12):4541–4547

    Article  Google Scholar 

  44. Benharrats N, Belbachir M, Legrand AP, d’Espinose de la Caillerie J-B (2003) 29Si and 27Al MAS NMR study of the zeolitization of kaolin by alkali leaching. Clay Miner 38(1):49–61

  45. Ward RL, McKague HL (1994) Clinoptilolite and heulandite structural differences as revealed by multinuclear nuclear magnetic resonance spectroscopy. J Phys Chem 98(4):1232–1237

    Article  Google Scholar 

  46. Richardson IG, Brough AR, Brydson R, Groves GW, Dobson CM (1993) Location of aluminum in substituted calcium silicate hydrate (C-S-H) gels as determined by 29Si and 27Al NMR and EELS. J Am Ceram Soc 76(9):2285–2288

    Article  Google Scholar 

  47. Andersen MD, Jakobsen HJ, Skibsted J (2003) Incorporation of aluminum in the calcium silicate hydrate (C–S–H) of hydrated Portland cements: A high-field 27Al and 29Si MAS NMR investigation. Inorg Chem 42(7):2280–2287

  48. Ben Haha M, Lothenbach B, Le Saout G, Winnefeld F (2012) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag – Part II: effect of Al2O3. Cem Concr Res 42(1):74–83

    Article  Google Scholar 

  49. Myers RJ, Bernal SA, San Nicolas R, Provis JL (2013) Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the crosslinked substituted tobermorite model. Langmuir 29(17):5294–5306

    Article  Google Scholar 

  50. Engelhardt G, Michel D (1987) High-Resolution Solid-State NMR of Silicates and Zeolites. John Wiley & Sons, Chichester

    Google Scholar 

  51. Valentini L, Dalconi MC, Parisatto M, Cruciani G, Artioli G (2011) Towards three-dimensional quantitative reconstruction of cement microstructure by X-ray diffraction microtomography. J Appl Cryst 44:272–280

    Article  Google Scholar 

  52. Sugiyama T, Promentilla MAB, Hitomi T, Takeda N (2010) Application of synchrotron microtomography for pore structure characterization of deteriorated cementitious materials due to leaching. Cem Concr Res 40(8):1265–1270

    Article  Google Scholar 

Download references

Acknowledgments

This work has been funded by the Australian Research Council, through a Linkage Project cosponsored by Zeobond Pty Ltd, including partial funding through the Particulate Fluids Processing Centre. We wish to thank Adam Kilcullen and David Brice for preparation of pastes specimens, John Gehman for his assistance in NMR data collection and Volker Rose and Xianghui Xiao for assistance in the data collection and processing on the 2BM instrument. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. The work of JLP and SAB received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement #335928 (GeopolyConc), and from the University of Sheffield.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Provis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernal, S.A., Provis, J.L., Myers, R.J. et al. Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Mater Struct 48, 517–529 (2015). https://doi.org/10.1617/s11527-014-0412-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0412-6

Keywords

Navigation