Skip to main content
Log in

Carbon nanotubes do not provide strong seeding effect for the nucleation of C3S hydration

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Understanding the fundamental role of carbon nanomaterials is the key to unlocking their potential in enhancing the macroscopic engineering properties and performance of cementitious materials. There is significant debate over the hypothesis that carbon nanomaterials with high surface areas could promote cement hydration by providing nucleation sites (i.e., seeding effect). The seeding effect of carbon nanotubes (CNTs) for cement hydration has lacked direct experimental evidence, mainly due to the inability to directly observe the surface of CNTs after their full contact with the pore solution of cement and the complexity of hydration products at the nanoscale. Different from previous studies, we developed CNT sponge (CNTSP), a macro-scale assembly consisting of randomly oriented and entangled CNTs in three-dimension space, as the platform for discriminating the potential nucleating effect of CNTs. By design, the CNTSP features nano-sized interconnected pores that allow only the pore solution to penetrate through, thus separating the tricalcium silicate (C3S) particles and the pore solution of C3S in situ. The experimental results revealed that pristine and oxidized CNTs could barely act as seeding material for the nucleation of C3S hydration products. Relative to pristine CNT, oxidized CNT can promote the local formation of calcium hydroxide (CH) that is only loosely connected to the CNT, while depressing that of calcium silicate hydrate (C–S–H). The CNTSP was further employed as a platform to investigate the effects of superplasticizer on C3S hydration, revealing that the superplasticizer improves the CNT-hydrates binding. This work not only provides fundamental knowledge about the limited role of CNT in C3S hydration, but also demonstrates a novel experimental platform for investigating the interaction between carbon nanomaterials and cement hydration products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wu Z, Khayat KH, Shi C et al (2017) Effect of nano-SiO2 particles and curing time on development of fiber-matrix bond properties and microstructure of ultra-high strength concrete. Cem Concr Res 95:247–256. https://doi.org/10.1016/j.cemconres.2017.02.031

    Article  Google Scholar 

  2. Feng D, Xie N, Gong C et al (2013) Portland cement paste modified by TiO2 nanoparticles: a microstructure perspective. Ind Eng Chem Res 52(33):11575–11582. https://doi.org/10.1021/ie4011595

    Article  Google Scholar 

  3. Chen J, Kou S, Poon CS et al (2012) Hydration and properties of nano-TiO2 blended cement composites. Cem Concr Compos 34(5):642–649. https://doi.org/10.1016/j.cemconcomp.2012.02.009

    Article  Google Scholar 

  4. Zhang LW, Kai MF, Liew KM et al (2017) Evaluation of microstructure and mechanical performance of CNT-reinforced cementitious composites at elevated temperatures. Compos A Appl Sci Manuf 95:286–293. https://doi.org/10.1016/j.compositesa.2017.02.001

    Article  Google Scholar 

  5. Camacho MD, Galao O, Baeza FJ et al (2014) Mechanical properties and durability of CNT cement composites. Materials 7(3):1640–1651. https://doi.org/10.3390/ma7031640

    Article  Google Scholar 

  6. Du H, Pang SD (2015) Enhancement of barrier properties of cement mortar with graphene nanoplatelet. Cem Concr Res 76:10–19. https://doi.org/10.1016/j.cemconres.2015.05.007

    Article  Google Scholar 

  7. Yang H, Cui H, Tang W et al (2017) A critical review on research progress of graphene/cement based composites. Compos A Appl Sci Manuf 102:273–296. https://doi.org/10.1016/j.compositesa.2017.07.019

    Article  Google Scholar 

  8. García-Macías E, D’Alessandro A, Castro-Triguero R et al (2017) Micromechanics modeling of the electrical conductivity of carbon nanotube cement-matrix composites. Compos B Eng 108:451–469. https://doi.org/10.1016/j.compositesb.2016.10.025

    Article  Google Scholar 

  9. Sun S, Ding S, Han B et al (2017) Multi-layer graphene-engineered cementitious composites with multifunctionality/intelligence. Compos B Eng 129:221–232. https://doi.org/10.1016/j.compositesb.2017.07.063

    Article  Google Scholar 

  10. Jung M, Lee Y, Hong SG et al (2020) Carbon nanotubes (CNTs) in ultra-high performance concrete (UHPC): dispersion, mechanical properties, and electromagnetic interference (EMI) shielding effectiveness (SE). Cem Concr Res 131:106017. https://doi.org/10.1016/j.cemconres.2020.106017

    Article  Google Scholar 

  11. Han B, Zheng Q, Sun S et al (2017) Enhancing mechanisms of multi-layer graphenes to cementitious composites. Compos A Appl Sci Manuf 101:143–150. https://doi.org/10.1016/j.compositesa.2017.06.016

    Article  Google Scholar 

  12. Jing G, Wu J, Lei T et al (2020) From graphene oxide to reduced graphene oxide: enhanced hydration and compressive strength of cement composites. Constr Build Mater 248:118699. https://doi.org/10.1016/j.conbuildmat.2020.118699

    Article  Google Scholar 

  13. RefaeliPeled MA et al (2016) The critical role of nanotube shape in cement composites. Cem Concr Compos 71:166–174. https://doi.org/10.1016/j.cemconcomp.2016.05.012

    Article  Google Scholar 

  14. Lin C, Wei W, Hu YH (2016) Catalytic behavior of graphene oxide for cement hydration process. J Phys Chem Solids 89:128–133. https://doi.org/10.1016/j.jpcs.2015.11.002

    Article  Google Scholar 

  15. Liu J, Li Q, Xu S (2019) Reinforcing mechanism of graphene and graphene oxide sheets on cement-based materials. J Mater Civ Eng 31(4):04019014.1-04019014.9. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002649

    Article  Google Scholar 

  16. Mahmoud H, Zhang K, De Kruijff RM et al (2019) Material properties of cement paste and mortar, modified with N-doped mesoporous carbon spheres (NMCSs). Cem Concr Res 120:92–101. https://doi.org/10.1016/j.cemconres.2019.03.021

    Article  Google Scholar 

  17. John E, Matschei T, Stephan D (2018) Nucleation seeding with calcium silicate hydrate–a review. Cem Concr Res 113:74–85. https://doi.org/10.1016/j.cemconres.2018.07.003

    Article  Google Scholar 

  18. Makar JM, Chan GW (2009) Growth of cement hydration products on single walled carbon nanotubes. J Am Ceram Soc 92(6):1303–1310. https://doi.org/10.1111/j.1551-2916.2009.03055.x

    Article  Google Scholar 

  19. Weiwen L, Weiming J, Forood TI et al (2017) Nano-silica sol-gel and carbon nanotube coupling effect on the performance of cement-based materials. Nanomaterials 7(7):185. https://doi.org/10.3390/nano7070185

    Article  Google Scholar 

  20. Cui H, Yang S, Memon S (2015) Development of carbon nanotube modified cement paste with microencapsulated phase-change material for structural-functional integrated application. Int J Mol Sci 16(4):8027–8039. https://doi.org/10.3390/ijms16048027

    Article  Google Scholar 

  21. Jung M, Park J, Hong SG et al (2020) Micro-and meso-structural changes on electrically cured ultra-high performance fiber-reinforced concrete with dispersed carbon nanotubes. Cem Concr Res 137:106214. https://doi.org/10.1016/j.cemconres.2020.106214

    Article  Google Scholar 

  22. Peng Z, Yang H (2009) Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 4(2):143–164. https://doi.org/10.1016/j.nantod.2008.10.010

    Article  Google Scholar 

  23. Jing G, Ye Z, Lu X et al (2017) Effect of graphene nanoplatelets on hydration behaviour of Portland cement by thermal analysis. Adv Cem Res 29(2):63–70. https://doi.org/10.1680/jadcr.16.00087

    Article  Google Scholar 

  24. Chen J, Ange-Therese A (2020) Influence of multi-walled carbon nanotubes on the hydration products of ordinary Portland cement paste. Cem Concr Res 137:106197. https://doi.org/10.1016/j.cemconres.2020.106197

    Article  Google Scholar 

  25. Sobolkina A, Mechtcherine V, Bergold ST et al (2016) Effect of carbon-based materials on the early hydration of tricalcium silicate. J Am Ceram Soc 99(6):2181–2196. https://doi.org/10.1111/jace.14187

    Article  Google Scholar 

  26. Shi T, Gao Y, Corr DJ et al (2019) FTIR study on early-age hydration of carbon nanotubes-modified cement-based materials. Adv Cem Res 31(8):353–361. https://doi.org/10.1680/jadcr.16.00167

    Article  Google Scholar 

  27. Amin MS, El-Gamal SMA, Hashem FS (2015) Fire resistance and mechanical properties of carbon nanotubes—clay bricks wastes (Homra) composites cement. Constr Build Mater 98(15):237–249. https://doi.org/10.1016/j.conbuildmat.2015.08.074

    Article  Google Scholar 

  28. Tafesse M, Kim HK (2019) The role of carbon nanotube on hydration kinetics and shrinkage of cement composite. Compos B Eng 169:55–64. https://doi.org/10.1016/j.compositesb.2019.04.004

    Article  Google Scholar 

  29. Juilland P, Gallucci E, Flatt RJ et al (2010) Dissolution theory applied to the induction period in alite hydration. Cem Concr Res 40(6):831–844. https://doi.org/10.1016/j.cemconres.2010.01.012

    Article  Google Scholar 

  30. Liu X (2002) Effect of foreign particles: a comprehensive understanding of 3D heterogeneous nucleation. J Cryst Growth 237:1806–1812. https://doi.org/10.1016/S0022-0248(01)02348-X

    Article  Google Scholar 

  31. Kong D, Huang S, Corr DJ et al (2018) Whether do nano-particles act as nucleation sites for C-S-H gel growth during cement hydration? Cem Concr Compos 87:98–109. https://doi.org/10.1016/j.cemconcomp.2017.12.007

    Article  Google Scholar 

  32. Tang J, Yang T, Yu C et al (2018) Precipitated calcium hydroxide morphology in nanoparticle suspensions: an experimental and molecular dynamics study. Cem Concr Compos 94:201–214. https://doi.org/10.1016/j.cemconcomp.2018.09.004

    Article  Google Scholar 

  33. Thomas JJ, Jennings HM, Chen JJ (2009) Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement. J Phys Chem 113(11):4327–4334. https://doi.org/10.1021/jp809811w

    Article  Google Scholar 

  34. Gui X, Wei J, Wang K et al (2010) Carbon nanotube sponges. Adv Mater 22(5):617–621. https://doi.org/10.1002/adma.200902986

    Article  Google Scholar 

  35. Lin Z, Zeng Z, Gui X et al (2016) Carbon nanotube sponges, aerogels, and hierarchical composites: synthesis, properties, and energy applications. Adv Energy Mater 6(17):1600554. https://doi.org/10.1002/aenm.201600554

    Article  Google Scholar 

  36. Kukkar D, Rani A, Kumar V et al (2020) Recent advances in carbon nanotube sponge–based sorption technologies for mitigation of marine oil spills. J Colloid Interface Sci 570:411–422. https://doi.org/10.1016/j.jcis.2020.03.006

    Article  Google Scholar 

  37. Kumar S, Kolay P, Malla S et al (2012) Effect of multiwalled carbon nanotubes on mechanical strength of cement paste. J Mater Civ Eng 24(1):84–91. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000350

    Article  Google Scholar 

  38. Kim HK, Park IS, Lee HK (2014) Improved piezoresistive sensitivity and stability of CNT/cement mortar composites with low water–binder ratio. Compos Struct 116:713–719. https://doi.org/10.1016/j.compstruct.2014.06.007

    Article  Google Scholar 

  39. Chaipanich A, Nochaiya T, Wongkeo W et al (2010) Compressive strength and microstructure of carbon nanotubes–fly ash cement composites. Mater Sci Eng 527(4–5):1063–1067. https://doi.org/10.1016/j.msea.2009.09.039

    Article  Google Scholar 

  40. Parveen S, Rana S, Fangueiro R et al (2015) Microstructure and mechanical properties of carbon nanotube reinforced cementitious composites developed using a novel dispersion technique. Cem Concr Res 73:215–227. https://doi.org/10.1016/j.cemconres.2015.03.006

    Article  Google Scholar 

  41. Junior CG, Zampiva RY, Venturini J et al (2019) CNT sponges with outstanding absorption capacity and electrical properties: impact of the CVD parameters on the product structure. Ceram Int 45(11):13761–13771. https://doi.org/10.1016/j.ceramint.2019.04.072

    Article  Google Scholar 

  42. Ma P, Siddiqui NA, Marom G et al (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A Appl Sci Manuf 41(10):1345–1367. https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  Google Scholar 

  43. Li Y, Li H, Wang Z et al (2020) Effect and mechanism analysis of functionalized multi-walled carbon nanotubes (MWCNTs) on CSH gel. Cem Concr Res 128:105955. https://doi.org/10.1016/j.cemconres.2019.105955

    Article  Google Scholar 

  44. Kitamura H, Sekido M, Takeuchi H et al (2011) The method for surface functionalization of single-walled carbon nanotubes with fuming nitric acid. Carbon 49(12):3851–3856. https://doi.org/10.1016/j.carbon.2011.05.020

    Article  Google Scholar 

  45. Garrault S, Nonat A (2001) Hydrated layer formation on tricalcium and dicalcium silicate surfaces: experimental study and numerical simulations. Langmuir 17(26):8131–8138. https://doi.org/10.1021/la011201z

    Article  Google Scholar 

  46. Masoero E, Thomas JJ, Jennings HM (2014) A reaction zone hypothesis for the effects of particle size and water-to-cement ratio on the early hydration kinetics of C3S. J Am Ceram Soc 97(3):967–975. https://doi.org/10.1111/jace.12713

    Article  Google Scholar 

  47. Sanchez F, Zhang L (2008) Molecular dynamics modeling of the interface between surface functionalized graphitic structures and calcium–silicate–hydrate: interaction energies, structure, and dynamics. J Colloid Interface Sci 323(2):349–358. https://doi.org/10.1016/j.jcis.2008.04.023

    Article  Google Scholar 

  48. Wang Z, Shirley MD, Meikle ST et al (2009) The surface acidity of acid oxidized multi-walled carbon nanotubes and the influence of in-situ generated fulvic acids on their stability in aqueous dispersions. Carbon 47(1):73–79. https://doi.org/10.1016/j.carbon.2008.09.038

    Article  Google Scholar 

  49. Park S, Lee KS, Bozoklu G et al (2008) Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2(3):572–578. https://doi.org/10.1021/nn700349a

    Article  Google Scholar 

  50. Li H, Du T, Xiao H et al (2017) Crystallization of calcium silicate hydrates on the surface of nanomaterials. J Am Ceram Soc 100(5):3227–3238. https://doi.org/10.1111/jace.14842

    Article  Google Scholar 

  51. Zhang Y, Kong X (2015) Correlations of the dispersing capability of NSF and PCE types of superplasticizer and their impacts on cement hydration with the adsorption in fresh cement pastes. Cem Concr Res 69:1–9. https://doi.org/10.1016/j.cemconres.2014.11.009

    Article  Google Scholar 

  52. Lu Z, Hanif A, Ning C et al (2017) Steric stabilization of graphene oxide in alkaline cementitious solutions: mechanical enhancement of cement composite. Mater Des 127:154–161. https://doi.org/10.1016/j.matdes.2017.04.083

    Article  Google Scholar 

  53. Ridi F, Fratini E, Luciani P et al (2012) Tricalcium silicate hydration reaction in the presence of comb-shaped superplasticizers: boundary nucleation and growth model applied to polymer-modified pastes. J Phys Chem 116(20):10887–10895. https://doi.org/10.1021/jp209156n

    Article  Google Scholar 

  54. Artioli G, Valentini L, Voltolini M et al (2015) Direct imaging of nucleation mechanisms by synchrotron diffraction micro-tomography: superplasticizer-induced change of C–S–H nucleation in cement. Cryst Growth Des 15(1):20–23. https://doi.org/10.1021/cg501466z

    Article  Google Scholar 

  55. Zhang Y, Cai X, Kong X et al (2017) Effects of comb-shaped superplasticizers with different charge characteristics on the microstructure and properties of fresh cement pastes. Constr Build Mater 155:441–450. https://doi.org/10.1016/j.conbuildmat.2017.08.087

    Article  Google Scholar 

  56. Mollah MY, Adams WJ, Schennach R et al (2000) A review of cement-superplasticizer interactions and their models. Adv Cem Res 12(4):153–161. https://doi.org/10.1680/adcr.2000.12.4.153

    Article  Google Scholar 

  57. Bullard JW, Jennings HM, Livingston RA et al (2011) Mechanisms of cement hydration. Cem Concr Res 41(12):1208–1223. https://doi.org/10.1016/j.cemconres.2010.09.011

    Article  Google Scholar 

  58. Scrivener KL, Juilland P, Monteiro P (2015) Advances in understanding hydration of Portland cement. Cem Concr Res 78:38–56. https://doi.org/10.1016/j.cemconres.2015.05.025

    Article  Google Scholar 

  59. Li W, Li X, Chen SJ et al (2017) Effects of graphene oxide on early-age hydration and electrical resistivity of Portland cement paste. Constr Build Mater 136:506–514. https://doi.org/10.1016/j.conbuildmat.2017.01.066

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52073073) and the Department of Transportation of Heilongjiang Province (Grants MJ20180005). X. Shi acknowledges the sabbatical leave support by Washington State University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the definition of this experimental study. Data collection, analysis and interpretation of results, draft manuscript preparation: Xiaonan Wang; funding acquisition: Decheng Feng; study conception and design: Jing Zhong, Decheng Feng; review and editing: Jing Zhong, Xianming Shi. All authors reviewed the results and approved the final version of the paper.

Corresponding authors

Correspondence to Xianming Shi or Jing Zhong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Feng, D., Shi, X. et al. Carbon nanotubes do not provide strong seeding effect for the nucleation of C3S hydration. Mater Struct 55, 172 (2022). https://doi.org/10.1617/s11527-022-02008-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-022-02008-5

Keywords

Navigation