Skip to main content
Log in

Automatic malware classification and new malware detection using machine learning

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

The explosive growth of malware variants poses a major threat to information security. Traditional anti-virus systems based on signatures fail to classify unknown malware into their corresponding families and to detect new kinds of malware programs. Therefore, we propose a machine learning based malware analysis system, which is composed of three modules: data processing, decision making, and new malware detection. The data processing module deals with gray-scale images, Opcode n-gram, and import functions, which are employed to extract the features of the malware. The decision-making module uses the features to classify the malware and to identify suspicious malware. Finally, the detection module uses the shared nearest neighbor (SNN) clustering algorithm to discover new malware families. Our approach is evaluated on more than 20 000 malware instances, which were collected by Kingsoft, ESET NOD32, and Anubis. The results show that our system can effectively classify the unknown malware with a best accuracy of 98.9%, and successfully detects 86.7% of the new malware.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Annachhatre, C., Austin, T.H., Stamp, M., 2015. Hidden Markov models for malware classification. J. Comput. Virol. Hack. Tech., 11(2):59–73. https://doi.org/10.1007/s11416-014-0215-x

    Article  Google Scholar 

  • Cheng, J.Y.C., Tsai, T.S., Yang, C.S., 2013. An information retrieval approach for malware classification based on Windows API calls. Int. Conf. on Machine Learning and Cybernetics, p.1678–1683. https://doi.org/10.1109/ICMLC.2013.6890868

    Google Scholar 

  • Damodaran, A., di Troia, F., Visaggio, C.A., et al., 2017. A comparison of static, dynamic, and hybrid analysis for malware detection. J. Comput. Virol. Hack. Tech., 13(1): 1–12. https://doi.org/10.1007/s11416-015-0261-z

    Article  Google Scholar 

  • Ding, Y.X., Dai, W., Yan, S.L., et al., 2014. Control flowbased Opcode behavior analysis for malware detection. Comput. Secur., 44:65–74. https://doi.org/10.1016/j.cose.2014.04.003

    Article  Google Scholar 

  • Egele, M., Scholte, T., Kirda, E., et al., 2012. A survey on automated dynamic malware-analysis techniques and tools. ACM Comput. Surv., 44(2): Article 6. https://doi.org/10.1145/2089125.2089126

    Google Scholar 

  • Ertoz, L., Steinbach, M., Kumar, V., 2002. A new shared nearest neighbor clustering algorithm and its applications. Workshop on Clustering High Dimensional Data and Its Applications at the 2nd SIAM Int. Conf. on Data Mining, p.105–115.

    Google Scholar 

  • Gandotra, E., Bansal, D., Sofat, S., 2014. Malware analysis and classification: a survey. J. Inform. Secur., 5(2):44440. https://doi.org/10.4236/jis.2014.52006

    Google Scholar 

  • Han, K.S., Lim, J.H., Im, E.G., 2013. Malware analysis method using visualization of binary files. Proc. on Research in Adaptive and Convergent Systems, p.317–321. https://doi.org/10.1145/2513228.2513294

    Google Scholar 

  • Hu, Q.H., Yu, D.R., Xie, Z.X., et al., 2007. EROS: ensemble rough subspaces. Patt. Recogn., 40(12):3728–3739. https://doi.org/10.1016/j.patcog.2007.04.022

    Article  Google Scholar 

  • Islam, R., Tian, R.H., Batten, L.M., et al., 2013. Classification of malware based on integrated static and dynamic features. J. Netw. Comput. Appl., 36(2):646–656. https://doi.org/10.1016/j.jnca.2012.10.004

    Article  Google Scholar 

  • Iwamoto, K., Wasaki, K., 2012. Malware classification based on extracted API sequences using static analysis. Proc. Asian Internet Engineering Conf., p.31–38. https://doi.org/10.1145/2402599.2402604

    Chapter  Google Scholar 

  • Jain, S., Meena, Y.K., 2011. Byte level n-gram analysis for malware detection. In: Venugopal, K.R., Patnaik, L.M. (Eds.), Computer Networks and Intelligent Computing. Springer, Berlin, p.51–59. https://doi.org/10.1007/978-3-642-22786-8_6

    Google Scholar 

  • Jarvis, R.A., Patrick, E.A., 1973. Clustering using a similarity measure based on shared near neighbors. IEEE Trans. Comput., C-22(11):1025–1034. https://doi.org/10.1109/T-C.1973.223640

    Article  Google Scholar 

  • Jolliffe, I.T., 2002. Principal Component Analysis (2nd Ed.). Springer, New York. https://doi.org/10.1007/b98835

    MATH  Google Scholar 

  • Kancherla, K., Mukkamala, S., 2013. Image visualization based malware detection. IEEE Symp. on Computational Intelligence in Cyber Security, p.40–44. https://doi.org/10.1109/CICYBS.2013.6597204

    Google Scholar 

  • Kapoor, A., Dhavale, S., 2016. Control flow graph based multiclass malware detection using bi-normal separation. Defen. Sci. J., 66(2):138–145. https://doi.org/10.14429/dsj.66.9701

    Article  Google Scholar 

  • Kaspersky Labs, 2015. Security Bulletin 2015. https://securelist. com/files/2015/12/KSB_2015_Statistics_FINAL_EN. pdf

    Google Scholar 

  • Kinable, J., Kostakis, O., 2011. Malware classification based on call graph clustering. J. Comput. Virol., 7(4):233–245. https://doi.org/10.1007/s11416-011-0151-y

    Article  Google Scholar 

  • Kong, D.G., Yan, G.H., 2013. Discriminant malware distance learning on structural information for automated malware classification. Proc. 19th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.1357–1365. https://doi.org/10.1145/2487575.2488219

    Google Scholar 

  • Lee, J., Jeong, K., Lee, H., 2010. Detecting metamorphic malwares using code graphs. Proc. ACM Symp. on Applied Computing, p.1970–1977. https://doi.org/10.1145/1774088.1774505

    Google Scholar 

  • Lin, C.T., Wang, N.J., Xiao, H., et al., 2015. Feature selection and extraction for malware classification. J. Inform. Sci. Eng., 31(3):965–992. https://doi.org/10.6688/JISE.2015.31.3.11

    Google Scholar 

  • Lin, D., Stamp, M., 2011. Hunting for undetectable metamorphic viruses. J. Comput. Virol., 7(3):201–214. https://doi.org/10.1007/s11416-010-0148-y

    Article  Google Scholar 

  • Liu, X.W., Wang, L., Huang, G.B., et al., 2015. Multiple kernel extreme learning machine. Neurocomputing, 149: 253–264. https://doi.org/10.1016/j.neucom.2013.09.072

    Article  Google Scholar 

  • Musale, M., Austin, T.H., Stamp, M., 2015. Hunting for metamorphic JavaScript malware. J. Comput. Virol. Hack. Tech., 11(2):89–102. https://doi.org/10.1007/s11416-014-0225-8

    Article  Google Scholar 

  • Nataraj, L., Karthikeyan, S., Jacob, G., et al., 2014. Malware images: visualization and automatic classification. Proc. 8th Int. Symp. on Visualization for Cyber Security. https://doi.org/10.1145/2016904.2016908

    Google Scholar 

  • Oliva, A., Torralba, A., 2001. Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis., 42(3):145–175. https://doi.org/10.1023/A:1011139631724

    Article  Google Scholar 

  • Pascanu, R., Stokes, J.W., Sanossian, H., et al., 2015. Malware classification with recurrent networks. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.1916–1920. https://doi.org/10.1109/ICASSP.2015.7178304

    Google Scholar 

  • Roundy, K.A., Miller, B.P., 2010. Hybrid analysis and control of malware. In: Jha, S., Sommer, R., Kreibich, C. (Eds.), Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, p.317–338. https://doi.org/10.1007/978-3-642-15512-3_17

    Google Scholar 

  • Russo, A., Sabelfeld, A., 2010. Dynamic vs. static flowsensitive security analysis. 23rd IEEE Computer Security Foundations Symp., p.186–199. https://doi.org/10.1109/CSF.2010.20

    Google Scholar 

  • Salton, G., McGill, M.J., 1986. Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York, USA.

    MATH  Google Scholar 

  • Shabtai, A., Moskovitch, R., Elovici, Y., et al., 2009. Detection of malicious code by applying machine learning classifiers on static features: a state-of-the-art survey. Inform. Secur. Tech. Rep., 14(1):16–29. https://doi.org/10.1016/j.istr.2009.03.003

    Article  Google Scholar 

  • Tao, H., Ma, X., Qiao, M., 2013. Subspace selective ensemble algorithm based on feature clustering. J. Comput., 8(2): 509–516.

    Article  Google Scholar 

  • Tian, R.H., Batten, L., Islam, R., et al., 2009. An automated classification system based on the strings of Trojan and virus families. 4th Int. Conf. on Malicious and Unwanted Software, p.23–30. https://doi.org/10.1109/MALWARE.2009.5403021

    Google Scholar 

  • Tian, R.H., Islam, R., Batten, L., et al., 2010. Differentiating malware from cleanware using behavioural analysis. 5th Int. Conf. on Malicious and Unwanted Software, p.23–30. https://doi.org/10.1109/MALWARE.2010.5665796

    Chapter  Google Scholar 

  • Tsyganok, K., Tumoyan, E., Babenko, L., et al., 2012. Classification of polymorphic and metamorphic malware samples based on their behavior. Proc. 5th Int. Conf. on Security of Information and Networks, p.111–116. https://doi.org/10.1145/2388576.2388591

    Google Scholar 

  • Wong, W., Stamp, M., 2006. Hunting for metamorphic engines. J. Comput. Virol., 2(3):211–229. https://doi.org/10.1007/s11416-006-0028-7

    Article  Google Scholar 

  • Yan, G.H., Brown, N., Kong, D.G., 2013. Exploring discriminatory features for automated malware classification. In: Rieck, K., Stewin, P., Seifert, J.P. (Eds.), Detection of Intrusions and Malware, and Vulnerability Assessment. Springer Berlin Heidelberg, p.41–61. https://doi.org/10.1007/978-3-642-39235-1_3

    Chapter  Google Scholar 

  • Yao, W., Chen, X.Q., Zhao, Y., et al., 2012. Concurrent subspace width optimization method for RBF neural network modeling. IEEE Trans. Neur. Netw. Learn. Syst., 23(2): 247–259. https://doi.org/10.1109/TNNLS.2011.2178560

    Article  Google Scholar 

  • Ye, Y.F., Li, T., Chen, Y., et al., 2010. Automatic malware categorization using cluster ensemble. Proc. 16th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.95–104. https://doi.org/10.1145/1835804.1835820

    Google Scholar 

  • Yu, Y., Wang, H.M., Yin, G., et al., 2016. Reviewer recommendation for pull-requests in GitHub: what can we learn from code review and bug assignment? Inform. Softw. Technol., 74:204–218. https://doi.org/10.1016/j.infsof.2016.01.004

    Article  Google Scholar 

  • Zhou, Z.H., Wu, J.X., Tang, W., 2002. Ensembling neural networks: many could be better than all. Artif. Intell., 137(1–2):239–263. https://doi.org/10.1016/S0004-3702(02)00190-X

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Liu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61303264) and the National Basic Research Program (973) of China (Nos. 2012CB315906 and 0800065111001)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Wang, Bs., Yu, B. et al. Automatic malware classification and new malware detection using machine learning. Frontiers Inf Technol Electronic Eng 18, 1336–1347 (2017). https://doi.org/10.1631/FITEE.1601325

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601325

Key words

CLC number

Navigation