Skip to main content
Log in

Research progress on Fabry-Perot resonator antenna

  • Review
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The Fabry-Perot resonator (FPR) antenna has found wide applications in microwave and millimeter waves and recently attracted considerable interest. In this paper, a summary of planar and cylindrical structures, analytic models and research development is presented, and a comparison between these structures and analytic models is made, showing that such analytic models as the FP cavity mode, electromagnetic band gap (EBG) defect mode, transmission line mode, and leaky-wave mode are consistent when applied to analyze this type of resonator antenna. Some interesting topics under recent research, including dual or multi-band, improvement of gain bandwidth, low profile and beam control, are surveyed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  • Alexopoulos, N.G., Jackson, D.R., 1984. Fundamental superstrate (cover) effects on printed circuit antennas. IEEE Trans. Antennas Propag., 32(8):807–816. [doi:10.1109/TAP.1984.1143433]

    Article  Google Scholar 

  • Boutayeb, H., Tarot, A.C., 2006. Internally excited Fabry-Perot type cavity: power normalization and directivity evaluation. Antenna Wirel. Propag. Lett., 5(1):159–162. [doi:10.1109/LAWP.2006.873944]

    Article  Google Scholar 

  • Boutayeb, H., Mahdjoubi, K., Tarot, A.C., Denidni, T.A., 2006a. Directivity of an antenna embedded inside a Fabry-Perot cavity analysis and design. Microw. Opt. Tech. Lett., 48(1):12–17. [doi:10.1002/mop.21249]

    Article  Google Scholar 

  • Boutayeb, H., Denidni, T.A., Mahdjoubi, K., Tarot, A.C., Sebak, A.R., Talbi, L., 2006b. Analysis and design of a cylindrical EBG based directive antenna. IEEE Trans. Antennas Propag., 54(1):211–219. [doi:10.1109/TAP.2005.861560]

    Article  Google Scholar 

  • Cheype, C., Serier, C., Thèvenot, M., Monediere, T., Reineix, A., Jecko, B., 2002. An electromagnetic bandgap resonator antenna. IEEE Trans. Antennas Propag., 50(9):1285–1290. [doi:10.1109/TAP.2002.800699]

    Article  Google Scholar 

  • Feresidis, A.P., Vardaxoglou, J.C., 2001. High-gain planar antenna using optimized partially reflective surfaces. IEE Proc.-Microw. Antennas Propag., 148(6):345–350. [doi:10.1049/ip-map:20010828]

    Article  Google Scholar 

  • Feresidis, A.P., Goussetis, G., Wang, S.H., Vardaxoglou, J.C., 2005. Artificial magnetic conductor surface and their application to low-profile high-gain planar antennas. IEEE Trans. Antennas Propag., 53(1):209–214. [doi:10.1109/ TAP.2004.840528]

    Article  Google Scholar 

  • Feresidis, A.P., Maragou, M., Palikaras, G.K., Vardaxoglou, J.C., 2007. Cylindrical-conformal Resonant Cavity Antennas Using Passive Periodic Surfaces. 10th Int. Conf. on Electromagnetics in Advanced Applications, p.165–168. [doi:10.1109/ICEAA.2007.4387263]

  • Gardelli, R., Albani, M., Capolino, F., 2006. Array thinning by using antennas in a Fabry-Perot cavity for gain enhancement. IEEE Trans. Antennas Propag., 54(7):1979–1990. [doi:10.1109/TAP.2006.877172]

    Article  Google Scholar 

  • Ge, Z.C., Zhang, W.X., Liu, Z.G., Gu, Y.Y., 2006. Broadband and high-gain printed antennas constructed from Fabry-Perot resonator structure using EBG or FSS cover. Microw. Opt. Tech. Lett., 48(7):1272–1274. [doi:10.1002/ mop.21674]

    Article  Google Scholar 

  • Hao, Y., Alomainy, A.H., Parini, C.G., 2004. Antenna-beam shaping from offset defects in UC-EBG cavities. Microw. Opt. Tech. Lett., 43(2):108–111. [doi:10.1002/mop.20391]

    Article  Google Scholar 

  • Jackson, D.R., Alexopoulos, N.G., 1985. Gain enhancement methods for printed circuit antennas. IEEE Trans. Antennas Propag., 33(9):976–987. [doi:10.1109/TAP.1985.1143709]

    Article  Google Scholar 

  • Jackson, D.R., Oliner, A., 1988. A leaky-wave analysis of the high-gain printed antenna configuration. IEEE Trans. Antennas Propag., 36(7):905–910. [doi:10.1109/8.7194]

    Article  Google Scholar 

  • Jackson, D.R., Oliner, A.A, Ip, A., 1993. Leaky-wave propagation and radiation for a narrow-beam multiple-layer dielectric structure. IEEE Trans. Antennas Propag., 41(3):344–348. [doi:10.1109/8.233128]

    Article  Google Scholar 

  • Lee, Y.J., Yeo, J., Ko, K.D., Mittra, R., Lee, Y., Park, W.S., 2004a. A novel design technique for control of defect frequencies of an electromagnetic bandgap (EBG) superstrate for dual-band directivity enhancement. Microw. Opt. Tech. Lett., 42(1):25–31. [doi:10.1002/mop.20196]

    Article  Google Scholar 

  • Lee, Y.J., Yeo, J., Mittra, R., Park, W.S., 2004b. Design of a high-directivity electromagnetic band gap resonator antenna using a frequency-selective surface superstrate. Microw. Opt. Tech. Lett., 43(6):462–467. [doi:10.1002/ mop.20502]

    Article  Google Scholar 

  • Lee, Y.J., Yeo, J., Mittra, R., Park, W.S., 2005a. Application of electromagnetic bandgap (EBG) superstrates with controllable defects for a class of patch antennas as spatial angular filters. IEEE Trans. Antennas Propag., 53(1):224–235. [doi:10.1109/TAP.2004.840521]

    Article  Google Scholar 

  • Lee, Y.J., Yeo, J., Mittra, R., Park, W.S., 2005b. Thin Frequency Selective Surface (FSS) Superstrate with Different Periodicities for Dual-band Directivity Enhancement. IEEE Int. Workshop on Antenna Technology, p.375–378.

  • Liu, Z.G., 2008. Quasi-periodic Structure Application in Fabry-Perot Resonator Printed Antenna. Asia Pasific Microwave Conf.

  • Liu, Z.G., Zhang, W.X., Fu, D.L., Gu, Y.Y., Ge, Z.C., 2008. Broadband Fabry-Perot resonator printed antennas using FSS superstrate with dissimilar size. Microw. Opt. Tech. Lett., 50(6):1623–1627. [doi:10.1002/mop.23456]

    Article  Google Scholar 

  • Ourir, A., Burokur, S.N., de Lustrac, A., 2007a. Phase-varying metamaterial for compact steerable directive antennas. Electron. Lett., 43(9):493–494. [doi:10.1049/el:20070298]

    Article  Google Scholar 

  • Ourir, A., Burokur, S.N., de Lustrac, A., 2007b. Electronically reconfigurable metamaterial for compact directive cavity antennas. Electron. Lett., 43(13):698–700. [doi:10.1049/el:20071181]

    Article  Google Scholar 

  • Palikaras, G.K., Feresidis, A.P., Vardaxoglou, J.C., 2004. Cylindrical electromagnetic bandgap structures for directive base station antennas. IEEE Antenna Wirel. Propag. Lett., 3(6):87–89. [doi:10.1109/LAWP.2004.830007]

    Article  Google Scholar 

  • Pirhadi, A., Hakkak, M., 2007. Design of compact dual band high directive electromagnetic bandgap (EBG) resonator antenna using artificial magnetic conductor. IEEE Trans. Antennas Propag., 55(6):1682–1690. [doi:10.1109/TAP.007. 898598]

    Article  Google Scholar 

  • Qiu, M., He, S., 2001. High-directivity patch antenna with both photonic bandgap substrate and photonic bandgap cover. Microw. Opt. Tech. Lett., 30(1):41–44. [doi:10.1002/mop.1214]

    Article  MathSciNet  Google Scholar 

  • Thévenot, M., Cheype, C., Reineix, A., Jecko, B., 1999. Directive photonic-bandgap antennas. IEEE Trans. Antennas Propag., 47(11):2115–2122.

    Google Scholar 

  • Thévenot, M., Drouet, J., Chantalat, R., Arnaud, E., Monediere, T., Jecko, B., 2007. Improvements for the EBG Resonator Antenna Technology. European Conf. on Antenna and Propagation, p.1–6.

  • Trentini, G.V., 1956. Partially reflecting sheet array. IRE Trans. Antennas Propag., 4(4):666–671. [doi:10.1109/TAP.1956.1144455]

    Article  Google Scholar 

  • Wang, S.H., Feresidis, A.P., Goussetis, G., Vardaxoglou, J.C., 2004. Low-profile resonant cavity antenna with artificial magnetic conductor ground plane. Electron. Lett., 40(7):405–406. [doi:10.1049/el:20040306]

    Article  Google Scholar 

  • Weily, A.R., Esselle, K.P., Sanders, B.C., Bird, T.S., 2005a. High-gain 1D EBG resonator antenna. Microw. Opt. Tech. Lett., 47(2):107–114. [doi:10.1002/mop.21095]

    Article  Google Scholar 

  • Weily, A.R., Horvath, L., Esselle, K.P., Sanders, B.C., Bird, T.S., 2005b. A planar resonator antenna based on a woodpile EBG material. IEEE Trans. Antennas Propag., 53(1):216–223. [doi:10.1109/TAP.2004.840531]

    Article  Google Scholar 

  • Weily, A.R., Esselle, K.P., Bird, T.S., Sanders, B.C., 2007. Dual resonator 1-D EBG antenna with slot array feed for improved radiation bandwidth. IET Microw. Antennas Propag., 1(1):198–203. [doi:10.1049/iet-map:20050314]

    Article  Google Scholar 

  • Wu, A.T., Guan, B.R., 2004. Broadband microstrip patch antenna using a superstrate layer. J. Hangzhou Inst. Electron. Eng., 24(6):4–7.

    Google Scholar 

  • Yang, H., Alexopoulos, N.G., 1987. Gain enhancement methods for printed circuit antennas through multiple superstrates. IEEE Trans. Antennas Propag., 35(7):860–863. [doi:10.1109/TAP.1987.1144186]

    Article  Google Scholar 

  • Zhao, T., Jackson, D.R., Williams, J.T., Yang, H.Y., Oliner, A., 2005a. 2D periodic leaky wave antenna part I: metal patch design. IEEE Trans. Antennas Propag., 53(11):3505–3514. [doi:10.1109/TAP.2005.858579]

    Article  Google Scholar 

  • Zhao, T., Jackson, D.R., Williams, J.T., 2005b. 2D periodic leaky wave antenna part II: slot design. IEEE Trans. Antennas Propag., 53(11):3515–3524. [doi:10.1109/TAP.2005.858580]

    Article  Google Scholar 

  • Zhou, L., Li, H.Q., Qin, Y.Q., Wei, Z.Y., Chan, C.T., 2005. Directive emission from subwavelength metamaterialbased cavities. Appl. Phys. Lett., 86(10):101101.

    Article  Google Scholar 

  • Zhu, F.M., Lin, Q.C., He, S., Hu, J., Ying, Z.N., 2003. A High Directivity Patch Antenna Using a PBG Cover Together with a PBG Substrate. Proc. 6th Int. Symp. on Antennas Propagation and EM Theory, p.92–95.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-guo Liu.

Additional information

Project (Nos. 60671016 and 60621002) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Zg., Ge, Zc. & Chen, Xy. Research progress on Fabry-Perot resonator antenna. J. Zhejiang Univ. Sci. A 10, 583–588 (2009). https://doi.org/10.1631/jzus.A0820546

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0820546

Key words

CLC number

Navigation