Skip to main content
Log in

Fatigue and fracture behavior of nickel-based superalloy Inconel 718 up to the very high cycle regime

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The fatigue and fracture behavior of nickel-based superalloy Inconel 718 was investigated up to the very high cycle regime under rotary bending tests at room temperature. It was found that this superalloy can still fracture after exceeding 107 cycles. Fractographic analysis revealed that there was a transition from fatigue crack initiation at multi-sites to single initiation with decreasing stress levels. The fracture surface can be divided into four areas according to the appearance, associated with fracture mechanics analysis of the corresponding stress intensity factors. The fracture mechanism dominant in each area was disclosed by scanning electron microscope examination and analyzed in comparison with those obtained from the crack growth tests. Subsequently, life prediction modeling was proposed by estimating the crack initiation and propagation stage respectively. It was found that Chan (2003)’s model for initiation life and the Paris law for growth life can provide comparable predictions against the experimental life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandre, F., Deyber, S., Pineau, A., 2004. Modelling the optimum grain size on the low cycle fatigue life of a Ni based superalloy in the presence of two possible crack initiation sites. Scripta Materialia, 50(1):25–30. [doi:10. 1016/j.scriptamat.2003.09.043]

    Article  Google Scholar 

  • Anderson, T.L., 1991. Fracture Mechanics: Fundamentals and Applications. CRC Press, Colorado, USA.

    MATH  Google Scholar 

  • Andersson, H., Persson, C., 2004. In-situ SEM study of fatigue crack growth behaviour in IN718. International Journal of Fatigue, 26(3):211–219. [doi:10.1016/S0142-1123(03) 00172-5]

    Article  Google Scholar 

  • Antolovich, S.D., Jayaraman, N., 1983. The Effect of Microstructure on Fatigue Behavior of Nickel Base Alloys. Plenum Press, NY, USA.

    Google Scholar 

  • Bache, M.R., Evans, W.J., Hardy, M.C., 1999. The effects of environment and loading waveform on fatigue crack growth in Inconel 718. International Journal of Fatigue, 21(Suppl. 1):69–77. [doi:10.1016/S0142-1123(99)00057-2]

    Article  Google Scholar 

  • Chai, G.C., 2006. The formation of subsurface non-defect fatigue crack origins. International Journal of Fatigue, 28(11):1533–1539. [doi:10.1016/j.ijfatigue.2005.06.060]

    Article  MATH  Google Scholar 

  • Chan, K.S., 2003. A microstructure-based fatigue-crack-initiation model. Metallurgical and Materials Transactions A, 34(1):43–58. [doi:10.1007/s11661-003-0207-9]

    Article  Google Scholar 

  • Chan, K.S., Leverant, G.R., 1987. Elevated-temperature fatigue crack-growth behavior of Mar-M200 single-crystals. Metallurgical and Materials Transactions A, 18(4):593–602. [doi:10.1007/BF02649475]

    Article  Google Scholar 

  • Chaussumier, M., Shahzad, M., Mabru, M., Chieragatti, R., Rezaï-Aria, F., 2010. A fatigue multi-site cracks model using coalescence, short and long crack growth laws, for anodized aluminum alloys. Procedia Engineering, 2(1):995–1004. [doi:10.1016/j.proeng.2010.03.108]

    Article  Google Scholar 

  • Chen, Q., Kawagoishi, N., Nisitani, H., 2000. Evaluation of fatigue crack growth rate and life prediction of Inconel 718 at room and elevated temperatures. Materials Science and Engineering: A, 277(1–2):250–257.

    Article  Google Scholar 

  • Chen, Q., Kawagoishi, N., Wang, Q.Y., Yan, N., Ono, T., Hashiguchi, G., 2005. Small crack behavior and fracture of nickel-based superalloy under ultrasonic fatigue. International Journal of Fatigue, 27(10–12):1227–1232. [doi:10.1016/j.ijfatigue.2005.07.022]

    Article  Google Scholar 

  • Chu, Z.K., Yu, J.J., Sun, X.F., Guan, H.R., Hu, Z.Q., 2008. High temperature low cycle fatigue behavior of a directionally solidified Ni-base superalloy DZ951. Materials Science and Engineering: A, 488(1–2):389–397. [doi:10.1016/j.msea.2007.11.045]

    Article  Google Scholar 

  • Fedelich, B., 1998. A stochastic theory for the problem of multiple surface crack coalescence. International Journal of Fracture, 91:23–45. [doi:10.1023/A:1007431802050]

    Article  Google Scholar 

  • Forsyth, P.J.E., 1957. Slip-band damage and extrusion. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 242(1229):198–202. [doi:10.1098/rspa.1957.0168]

    Article  Google Scholar 

  • Fournier, B., Sauzay, M., Caes, C., Noblecourt, M., Mottot, M., Bougault, A., Rabeau, V., Man, J., Gillia, O., Lemoine, P., Pineau, A., 2008. Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensitic steel. Part III: Lifetime prediction. International Journal of Fatigue, 30(10–11):1797–1812. [doi:10.1016/j.ijfatigue.2008.02.006]

    Article  Google Scholar 

  • Fournier, D., Pineau, A., 1977. Low cycle fatigue behavior of Inconel 718 at 298 K and 823 K. Metallurgical and Materials Transactions A, 8(7):1095–1105. [doi:10.1007/BF02667395]

    Article  Google Scholar 

  • He, Y.H., Yu, H.C., Guo, W.B., Shen, L.L., Su, B., 2006. Experimental study on fatigue crack growth behavior of direct aging GH4169 superalloy. Journal of Aerospace Power, 21(2):349–353 (in Chinese).

    Google Scholar 

  • Kobayashi, K., Yamaguchi, K., Hayakawa, M., Kimura, M., 2005. Grain size effect on high-temperature fatigue properties of alloy718. Materials Letters, 59(2–3):383–386. [doi:10.1016/j.matlet.2004.09.029]

    Article  Google Scholar 

  • Leo Prakash, D.G.L., Walsh, M.J., Maclachlan, D., Korsunsky, A.M., 2009. Crack growth micro-mechanisms in the IN718 alloy under the combined influence of fatigue, creep and oxidation. International Journal of Fatigue, 31(11–12):1966–1977. [doi:10.1016/j.ijfatigue.2009.01. 023]

    Article  Google Scholar 

  • Ma, X.F., Shi, H.J., Gu, J.L., Wang, Z.X., Harders, H., Malow, T., 2008. Temperature effect on low-cycle fatigue behaviour of nickel-based single crystalline superalloy. Acta Mechanica Solida Sinica, 21(4):289–297.

    Article  Google Scholar 

  • Masuda, C., Tanaka, Y., 1986. Relationship between fatigue strength and hardness for high strength steels. Transaction of the Japan Society Mechnical Engineers-Part A, 52:847–852.

    Article  Google Scholar 

  • Mercer, C., Soboyejo, A.B.O., Soboyejo, W.O., 1999. Micromechanisms of fatigue crack growth in a forged Inconel 718 nickel-based superalloy. Materials Science and Engineering: A, 270(2):308–322.

    Article  Google Scholar 

  • Murakami, Y., Kawakami, K., Duckworth, W.E., 1991. Quantitative-evaluation of effects of shape and size of artificially introduced alumina particles on the fatigue-strength of 1.5Ni-Cr-Mo (En24) steel. International Journal of Fatigue, 13(6):489–499.

    Article  Google Scholar 

  • Pineau, A., 1989. Mechanisms of Creep-fatigue Interactions, Advances in Fatigue Science and Technology. Kluwer Academic, Dordrecht.

    Google Scholar 

  • Reger, M., Remy, L., 1988a. High-temperature, low-cycle fatigue of IN-100 superalloy. 1. Influence of frequency and environment at high-temperatures. Materials Science and Engineering: A, 101:55–63.

    Article  Google Scholar 

  • Reger, M., Remy, L., 1988b. High-temperature, low-cycle fatigue of IN-100 superalloy. 1. Influence of temperature on the low-cycle fatigue behavior. Materials Science and Engineering: A, 101:47–54. [doi:10.1016/0921-5093(88) 90049-4]

    Article  Google Scholar 

  • Remy, L., Alam, A., Haddar, N., Köster, A., Marchal, N., 2007. Growth of small cracks and prediction of lifetime in high-temperature alloys. Materials Science and Engineering: A, 468–470:40–50. [doi:10.1016/j.msea. 2006.08.133]

    Article  Google Scholar 

  • Sakai, T., Sato, Y., Oguma, N., 2002. Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue. Fatigue & Fracture of Engineering Materials & Structures, 25(8–9):765–773. [doi:10.1046/j.1460-2695.2002.00574.x]

    Article  Google Scholar 

  • Sakai, T., Sakai, T., Okada, K., Furuichi, M., Nishikawa, I., Sugeta, A., 2006. Statistical fatigue properties of SCM435 steel in ultra-long-life regime based on JSMS database on fatigue strength of metallic materials. International Journal of Fatigue, 28(11):1486–1492. [doi:10.1016/j.ijfatigue.2005.09.018]

    Article  MATH  Google Scholar 

  • Shiozawa, K., Lu, L., Ishihara, S., 2001. S-N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel. Fatigue & Fracture of Engineering Materials & Structures, 24(12):781–790.

    Article  Google Scholar 

  • Socie, D.F., 1983. Critical Plane Approaches for Multiaxial Fatigue Damage Assessment. ASTM, Philadelphia.

    Google Scholar 

  • Suresh, S., 1998. Fatigue of Materials. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Tanaka, K., Mura, T., 1981. A dislocation model for fatigue crack initiation. Journal of Applied Mechanics-Transactions of the ASME, 48(1):97–103. [doi:10.1115/1. 3157599]

    Article  MATH  Google Scholar 

  • Tomkins, B., 1968. Fatigue crack propagation: an analysis. Philosophical Magazine, 18:1041–1066.

    Article  Google Scholar 

  • Venkataraman, G., Chung, Y.W., Mura, T., 1991. Application of minimum energy formalism in a multiple slip band model for fatigue—II. Crack nucleation and derivation of a generalised Coffin-Manson law. Acta Metallurgica et Materialia, 39(11):2631–2638. [doi:10.1016/0956-7151 (91)90079-G]

    Article  Google Scholar 

  • Wang, Q.Y., Bathias, C., Kawagoishi, N., Chen, Q., 2002. Effect of inclusion on subsurface crack initiation and gigacycle fatigue strength. International Journal of Fatigue, 24(12):1269–1274. [doi:10.1016/S0142-1123 (02)00037-3]

    Article  Google Scholar 

  • Wang, Q.Y., Kawagoishi, N., Chen, Q., 2006. Fatigue and fracture behaviour of structural Al-alloys up to very long life regimes. International Journal of Fatigue, 28(11): 1572–1576. [doi:10.1016/j.ijfatigue.2005.09.017]

    Article  MATH  Google Scholar 

  • Yan, N., Kawagoishi, N., Chen, Q., Wang, Q.Y., Nishitani, H., Kondo, E., 2003. Fatigue properties of Inconel 718 in long life region at elevated temperature. Key Engineering Materials, 243–244:321–326. [doi:10.4028/www.scientific.net/KEM.243-244.321]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-ji Shi.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 10872105 and 51071094), and the Mitsubishi Heavy Industries, Ltd., Japan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Xf., Duan, Z., Shi, Hj. et al. Fatigue and fracture behavior of nickel-based superalloy Inconel 718 up to the very high cycle regime. J. Zhejiang Univ. Sci. A 11, 727–737 (2010). https://doi.org/10.1631/jzus.A1000171

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1000171

Key words

CLC number

Navigation