Skip to main content
Log in

A numerical investigation of the flow of nanofluids through a micro Tesla valve

纳米流体在微尺度特斯拉阀中流动的数值研究

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

In this study, Al2O3-water nanofluids flowing through a micro-scale T45-R type Tesla valve was investigated numerically. Both forward and reverse flows were investigated based on a verified numerical model. The effects of nanofluids flow rate, temperature, and nanoparticle volume fraction on fluid separation in the bifurcated section and the pressure drop characteristics were analyzed. It was found that most of the nanofluids flow into the straight channel of the bifurcated section when flowing forward, and into the arc channel when flowing reversely. The percentage of the main flow increases with flow rate, temperature, and nanoparticle volume fraction. Additionally, the jet flow from the arc channel leads to a larger pressure drop than forward flow. Finally, the diodicity was found most affected by flow rate, and a correlation used to predict the change in diodicity with the flow rate was proposed.

中文概要

目的

微通道以其效率高、体积小等特点在许多领域有 着越来越广泛的应用。特斯拉阀是一种没有运动 部件的止回阀,在微流动控制领域有着明显的优 势。大量研究表明,将纳米流体运用到微尺度通 道中可明显提高换热效率。本文将二者结合,研 究Al2O3-水纳米流体在微尺度特斯拉阀中的流动 特性,为微尺度特斯拉阀以及纳米流体的进一步 研究提供参考。

创新点

1. 将特斯拉阀应用于纳米流体的微流动控制中; 2. 研究不同的操作条件和不同的介质特性对纳 米流体在微尺度特斯拉阀中流动特性的影响; 3. 研究纳米流体在微尺度特斯拉阀中不同流动 方向的流体分布和压力情况,并根据特斯拉阀的 压降比(反向流动压降/正向流动压降)来分析特 斯拉阀对微流动的控制效果。

方法

1. 建立微尺度特斯拉阀的三维模型;2. 通过有效 性验证的数值方法,在不同操作条件和不同流动 介质特性的情况下,模拟纳米流体在微尺度特斯 拉阀中正反两个方向的流动;3. 根据流体在流动 过程中的分布以及压力的变化情况,分析温度、 流体流量和纳米颗粒体积分数对纳米流体在微 尺度特斯拉阀中流动特性的影响。

结论

1. 纳米流体在特斯拉阀中正向流动时,大部分流 体进入了分叉段中的直通道;而反向流动时,大 部分流体进入了分叉段中的弧形通道,并且随着 流量、温度和纳米颗粒体积分数的增加,主流量 的百分比增加。2. 当纳米流体反向流动时,在弧 形通道出口处的射流对压降的影响非常明显,这 是导致反向流动压降大于正向流动的重要原因。 3. 特斯拉阀的压降比受流量的影响最显著;在本 文的研究范围内,压降比随着流量的增加而线性 增加。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdollahi A, Mohammed HA, Vanaki SM, et al., 2017. Fluid flow and heat transfer of nanofluids in microchannel heat sink with V–type inlet/outlet arrangement. Alexandria Engineering Journal, 56(1): 161–170. https://doi.org/10.1016/j.aej.2016.09.019

    Article  Google Scholar 

  • Amirante R, Distaso E, Tamburrano P, 2016. Sliding spool design for reducing the actuation forces in direct operated proportional directional valves: experimental validation. Energy Conversion and Management, 119:399–410. https://doi.org/10.1016/j.enconman.2016.04.068

    Article  Google Scholar 

  • Anagnostopoulos JS, Mathioulakis DS, 2005. Numerical simulation and hydrodynamic design optimization of a Tesla–type valve for micropumps. Proceedings of the 3rd IASME/WSEAS International Conference on Fluid Dynamics & Aerodynamics, p.195–201.

    Google Scholar 

  • Anbumeenakshi C, Thansekhar MR, 2017. On the effectiveness of a nanofluid cooled microchannel heat sink under non–uniform heating condition. Applied Thermal Engineering, 113:1437–1443. https://doi.org/10.1016/j.applthermaleng.2016.11.144

    Article  Google Scholar 

  • Balasubramanian KR, Krishnan RA, Suresh S, 2018. Transient flow boiling performance and critical heat flux evaluation of Al2O3–water nanofluid in parallel microchannels. Journal of Nanofluids, 7(6): 1035–1044. https://doi.org/10.1166/jon.2018.1549

    Article  Google Scholar 

  • Bhuwakietkumjohn N, Parametthanuwat T, 2015. Application of silver nanoparticles contained in ethanol as a working fluid in an oscillating heat pipe with a check valve (CLOHP/CV): a thermodynamic behaviour study. Heat and Mass Transfer, 51(9): 1219–1228. https://doi.org/10.1007/s00231–014–1493–z

    Article  Google Scholar 

  • Buschmann MH, 2017. Nanofluid heat transfer in laminar pipe flow with twisted tape. Heat Transfer Engineering, 38(2): 162–176. https://doi.org/10.1080/01457632.2016.1177381

    Article  Google Scholar 

  • Chao Q, Zhang JH, Xu B, et al., 2018. Discussion on the Reynolds equation for the slipper bearing modeling in axial piston pumps. Tribology International, 118:140–147. https://doi.org/10.1016/j.triboint.2017.09.027

    Article  Google Scholar 

  • Choi SUS, 2009. Nanofluids: from vision to reality through research. Journal of Heat transfer, 131(3): 033106. https://doi.org/10.1115/1.3056479

    Article  Google Scholar 

  • de Vries SF, Florea D, Homburg FGA, et al., 2017. Design and operation of a Tesla–type valve for pulsating heat pipes. International Journal of Heat and Mass Transfer, 105: 1–11. https://doi.org/10.1016/j.ijheatmasstransfer.2016.09.062

    Article  Google Scholar 

  • Erdodi I, Hos C, 2017. Prediction of quarter–wave instability in direct spring operated pressure relief valves with upstream piping by means of CFD and reduced order modelling. Journal of Fluids and Structures, 73:37–52. https://doi.org/10.1016/j.jfluidstructs.2017.05.003

    Article  Google Scholar 

  • Gómez–Villarejo R, Martín EI, Sánchez–Coronilla A, et al., 2018. Experimental characterization and theoretical modelling of Ag and Au–nanofluids: a comparative study of their thermal properties. Journal of Nanofluids, 7(6): 1059–1068. https://doi.org/10.1166/jon.2018.1544

    Article  Google Scholar 

  • Jin ZJ, Gao ZX, Zhang M, et al., 2018a. Computational fluid dynamics analysis on orifice structure inside valve core of pilot–control angle globe valve. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 232(13): 2419–2429. https://doi.org/10.1177/0954406217721257

    Google Scholar 

  • Jin ZJ, Gao ZX, Chen MR, et al., 2018b. Parametric study on Tesla valve with reverse flow for hydrogen decompression. International Journal of Hydrogen Energy, 43(18): 8888–8896. https://doi.org/10.1016/j.ijhydene.2018.03.014

    Article  Google Scholar 

  • Jung JY, Oh HS, Kwak Y, 2009. Forced convective heat transfer of nanofluids in microchannels. International Journal of Heat and Mass Transfer, 52(1–2): 466–472. https://doi.org/10.1016/j.ijheatmasstransfer.2008.03.033

    Article  Google Scholar 

  • Lisowski E, Filo G, Rajda J, 2018. Analysis of flow forces in the initial phase of throttle gap opening in a proportional control valve. Flow Measurement and Instrumentation, 59:157–167. https://doi.org/10.1016/j.flowmeasinst.2017.12.011

    Article  Google Scholar 

  • Lun CKK, Savage SB, Jeffrey DJ, et al., 1984. Kinetic theories for granular flow: inelastic particles in couette flow and slightly inelastic particles in a general flowfield. Journal of Fluid Mechanics, 140:223–256. https://doi.org/10.1017/S0022112084000586

    Article  MATH  Google Scholar 

  • Malvandi A, Ganji DD, 2015. Effects of nanoparticle migration and asymmetric heating on magnetohydrodynamic forced convection of alumina/water nanofluid in microchannels. European Journal of Mechanics–B/Fluids, 52: 169–184. https://doi.org/10.1016/j.euromechflu.2015.03.004

    Article  MATH  Google Scholar 

  • Malvandi A, Moshizi SA, Ganji DD, 2016. Two–component heterogeneous mixed convection of alumina/water nanofluid in microchannels with heat source/sink. Advanced Powder Technology, 27(1): 245–254. https://doi.org/10.1016/j.apt.2015.12.009

    Article  Google Scholar 

  • Mirzaei M, Dehghan M, 2013. Investigation of flow and heat transfer of nanofluid in microchannel with variable property approach. Heat and Mass Transfer, 49(12): 1803–1811. https://doi.org/10.1007/s00231–013–1217–9

    Article  Google Scholar 

  • Mojarrad MS, Keshavarz A, Shokouhi A, 2013. Nanofluids thermal behavior analysis using a new dispersion model along with single–phase. Heat and Mass Transfer, 49(9): 1333–1343. https://doi.org/10.1007/s00231–013–1182–3

    Article  Google Scholar 

  • Nasrin R, Parvin S, Alim MA, et al., 2012. Transient analysis on forced convection phenomena in a fluid valve using nanofluid. Numerical Heat Transfer, Part A: Applications, 62(7): 589–604. https://doi.org/10.1080/10407782.2012.707060

    Article  Google Scholar 

  • Paudel BJ, Jamal T, Thompson SM, et al., 2014. Thermal effects on micro–sized tesla valves. Proceedings of the ASME 2014 4th Joint US–European Fluids Engineering Division Summer Meeting Collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. https://doi.org/10.1115/FEDSM2014–21929

    Google Scholar 

  • Qian JY, Liu BZ, Jin ZJ, et al., 2016. Numerical analysis of flow and cavitation characteristics in a pilot–control globe valve with different valve core displacements. Journal of Zhejiang University–SCIENCE A (Applied Physics & Engineering), 17(1): 54–64. https://doi.org/10.1631/jzus.A1500228

    Article  Google Scholar 

  • Qian JY, Wei L, Zhang M, et al., 2017. Flow rate analysis of compressible superheated steam through pressure reducing valves. Energy, 135:650–658. https://doi.org/10.1016/j.energy.2017.06.170

    Article  Google Scholar 

  • Rostami J, Abbassi A, 2016. Conjugate heat transfer in a wavy microchannel using nanofluid by two–phase Eulerian–Lagrangian method. Advanced Powder Technology, 27(1): 9–18. https://doi.org/10.1016/j.apt.2015.10.003

    Article  Google Scholar 

  • Shedid MH, 2015. Hydrodynamic characteristics of a butterfly valve controlling Al2O3/water nanofluid flow. International Journal of Fluid Mechanics Research, 42(3): 227–235. https://doi.org/10.1615/InterJFluidMechRes.v42.i3.40

    Article  Google Scholar 

  • Syamlal M, Rogers W, O’Brien TJ, 1993. MFIX Documentation Theory Guide. DOE/METC–94/1004, USDOE Morgantown Energy Technology Center, Washington. https://doi.org/10.2172/10145548

    Google Scholar 

  • Thompson SM, Ma HB, Wilson C, 2011. Investigation of a flat–plate oscillating heat pipe with Tesla–type check valves. Experimental Thermal and Fluid Science, 35(7): 1265–1273. https://doi.org/10.1016/j.expthermflusci.2011.04.014

    Article  Google Scholar 

  • Thompson SM, Paudel BJ, Jamal T, et al., 2014. Numerical investigation of multistaged Tesla valves. Journal of Fluids Engineering, 136(8): 081102. https://doi.org/10.1115/1.4026620

    Article  Google Scholar 

  • Topuz A, Engin T, Özalp AA, et al., 2018. Experimental investigation of optimum thermal performance and pressure drop of water–based Al2O3, TiO2 and ZnO nanofluids flowing inside a circular microchannel. Journal of Thermal Analysis and Calorimetry, 131(3): 2843–2863. https://doi.org/10.1007/s10973–017–6790–6

    Article  Google Scholar 

  • Truong TQ, Nguyen NT, 2003. Simulation and optimization of tesla valves. Nanotech, 1:178–181.

    Google Scholar 

  • Wang CT, Chen YM, Hong PA, et al., 2014. Tesla valves in micromixers. International Journal of Chemical Reactor Engineering, 12(1): 397–403. https://doi.org/10.1515/ijcre–2013–0106

    Article  Google Scholar 

  • Wannapakhe S, Rittidech S, Bubphachot B, et al., 2009. Heat transfer rate of a closed–loop oscillating heat pipe with check valves using silver nanofluid as working fluid. Journal of Mechanical Science and Technology, 23(6): 1576–1582. https://doi.org/10.1007/s12206–009–0424–2

    Article  Google Scholar 

  • Yoo D, Lee J, Lee B, et al., 2018. Further elucidation of nanofluid thermal conductivity measurement using a transient hot–wire method apparatus. Heat and Mass Transfer, 54(2): 415–424. https://doi.org/10.1007/s00231–017–2144–y

    Article  Google Scholar 

  • Zhang JH, Chao Q, Xu B, 2018a. Analysis of the cylinder block tilting inertia moment and its effect on the performance of high–speed electro–hydrostatic actuator pumps of aircraft. Chinese Journal of Aeronautics, 31(1): 169–177. https://doi.org/10.1016/j.cja.2017.02.010

    Article  Google Scholar 

  • Zhang JH, Wang D, Xu B, et al., 2018b. Experimental and numerical investigation of flow forces in a seat valve using a damping sleeve with orifices. Journal of Zhejiang University–SCIENCE A (Applied Physics & Engineering), 19(6): 417–430. https://doi.org/10.1631/jzus.A1700164

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-jiang Jin.

Additional information

Project supported by the National Natural Science Foundation of China (No. 51805470), the Fundamental Research Funds for the Central Universities (No. 2018QNA4013), the Open Foundation of Key Laboratory of Efficient Utilization of Low and Medium Grade Energy (Tianjin University), Ministry of Education of China (No. 201704-403)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Jy., Chen, Mr., Liu, Xl. et al. A numerical investigation of the flow of nanofluids through a micro Tesla valve. J. Zhejiang Univ. Sci. A 20, 50–60 (2019). https://doi.org/10.1631/jzus.A1800431

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1800431

Key words

CLC number

关键词

Navigation