Skip to main content
Log in

Effects of vacancies on interwall spacings of multi-walled carbon nanotubes

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

We use molecular dynamics (MD) simulations to study the effects of vacancies on tube diameters and interwall spacings of multi-walled carbon nanotubes (MWCNTs). Two types of vacancies, double vacancy and three dangling-bond (3DB) single vacancy, are identified to have opposite effects on the tube size change, which explains the inconsistency of the experimentally measured interwall spacings of MWCNTs after electron beam irradiation. A theoretical model to quantitatively predict the shrunk structures of the irradiated MWCNTs is further developed. We also discuss the fabrications of prestressed MWCNTs, in which reduced interwall spacings are desired to enhance the overall elastic modulus and strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ajayan, P.M., Ravikumar, V., Charlier, J.C., 1998. Surface reconstructions and dimensional changes in single-walled carbon nanotubes. Physical Review Letters, 81(7):1437–1440. [doi:10.1103/PhysRevLett.81.1437]

    Article  Google Scholar 

  • Banhart, F., 1999. Irradiation effects in carbon nanostructures. Reports on Progress in Physics, 62(8):1181–1221. [doi:10.1088/0034-4885/62/8/201]

    Article  Google Scholar 

  • Banhart, F., Ajayan, P.M., 1996. Carbon onions as nanoscopic pressure cells for diamond formation. Nature, 382(6590): 433–435. [doi:10.1038/382433a0]

    Article  Google Scholar 

  • Banhart, F., Li, J.X., Krasheninnikov, A.V., 2005. Carbon nanotubes under electron irradiation: Stability of the tubes and their action as pipes for atom transport. Physical Review B, 71(24):241408. [doi:10.1103/PhysRevB.71.241408]

    Article  Google Scholar 

  • Cumings, J., Zettl, A., 2000. Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes. Science, 289(5479):602–604. [doi:10.1126/science.289.5479.602]

    Article  Google Scholar 

  • Ding, W., Calabri, L., Kohlhaas, K.M., Chen, X., Dikin, D.A., Ruoff, R.S., 2007. Modulus, fracture strength, and brittle vs. plastic response of the outer shell of arc-grown multi-walled carbon nanotubes. Experimental Mechanics, 47(1):25–36. [doi:10.1007/s11340-006-9344-6]

    Article  Google Scholar 

  • Hashimoto, A., Suenaga, K., Gloter, A., Urita, K., Iijima, S., 2004. Direct evidence for atomic defects in graphene layers. Nature, 430(7002):870–873. [doi:10.1038/nature02817]

    Article  Google Scholar 

  • Jung, S.I., Jo, S.H., Moon, H.S., Kim, J.M., Zang, D.S., Lee, C.J., 2007. Improved crystallinity of double-walled carbon nanotubes after a high-temperature thermal annealing and their enhanced field emission properties. Journal of Physical Chemistry C, 111(11):4175–4179. [doi:10.1021/jp0676078]

    Article  Google Scholar 

  • Krasheninnikov, A.V., Banhart, F., 2007. Engineering of nanostructured carbon materials with electron or ion beams. Nature Materials, 6(10):723–733. [doi:10.1038/nmat1996]

    Article  Google Scholar 

  • Krasheninnikov, A.V., Lehtinen, P.O., Foster, A.S., Nieminen, R.M., 2006. Bending the rules: contrasting vacancy energetics and migration in graphite and carbon nanotubes. Chemical Physics Letters, 418(1–3):132–136. [doi:10.1016/j.cplett.2005.10.106]

    Article  Google Scholar 

  • Krasheninnikov, A.V., Miyamoto, Y., Tomanek, D., 2007. Role of electronic excitations in ion collisions with carbon nanostructures. Physical Review Letters, 99(1):016104. [doi:10.1103/PhysRevLett.99.016104]

    Article  Google Scholar 

  • Lee, C., Wei, X.D., Kysar, J.W., Hone, J., 2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887):385–388. [doi:10.1126/science.1157996]

    Article  Google Scholar 

  • Lu, A.J., Pan, B.C., 2004. Nature of single vacancy in achiral carbon nanotubes. Physical Review Letters, 92(10): 105504. [doi:10.1103/PhysRevLett.92.105504]

    Article  Google Scholar 

  • Mielke, S.L., Belytschko, T., Schatz, G.C., 2007. Nanoscale fracture mechanics. Annual Review of Physical Chemistry, 58(1):185–209. [doi:10.1146/annurev.physchem.58.032806.104502]

    Article  Google Scholar 

  • Peng, B., Locascio, M., Zapol, P., Li, S.Y., Mielke, S.L., Schatz, G.C., Espinosa, H.D., 2008. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotechnology, 3(10):626–631. [doi:10.1038/nnano.2008.211]

    Article  Google Scholar 

  • Plimpton, S., 1995. Fast parallel algorithms for short-range molecular-dynamics. Journal of Computational Physics, 117(1):1–19. [doi:10.1006/jcph.1995.1039]

    Article  MATH  Google Scholar 

  • Stuart, S.J., Tutein, A.B., Harrison, J.A., 2000. A reactive potential for hydrocarbons with intermolecular interactions. Journal of Chemical Physics, 112(14):6472–6486. [doi:10.1063/1.481208]

    Article  Google Scholar 

  • Sun, L., Banhart, F., Krasheninnikov, A.V., Rodriguez-Manzo, J.A., Terrones, M., Ajayan, P.M., 2006. Carbon nanotubes as high-pressure cylinders and nanoextruders. Science, 312(5777):1199–1202. [doi:10.1126/science.1124594]

    Article  Google Scholar 

  • Sun, L.T., Krasheninnikov, A.V., Ahlgren, T., Nordlund, K., Banhart, F., 2008. Plastic deformation of single nanometer-sized crystals. Physical Review Letters, 101(15): 156101. [doi:10.1103/PhysRevLett.101.156101]

    Article  Google Scholar 

  • Wang, C., Wang, C.Y., 2006. Geometry and electronic properties of single vacancies in achiral carbon nanotubes. European Physical Journal B, 54(2):243–247. [doi:10.1140/epjb/e2006-00448-6]

    Article  Google Scholar 

  • Xu, Z.P., Wang, L.F., Zheng, Q.S., 2008. Enhanced mechanical properties of prestressed multi-walled carbon nanotubes. Small, 4(6):733–737. [doi:10.1002/smll.200700678]

    Article  Google Scholar 

  • Yu, M.F., Yakobson, B.I., Ruoff, R.S., 2000a. Controlled sliding and pullout of nested shells in individual multiwalled carbon nanotubes. Journal of Physical Chemistry B, 104(37):8764–8767. [doi:10.1021/jp002828d]

    Article  Google Scholar 

  • Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Kelly, T.F., Ruoff, R.S., 2000b. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287(5453):637–640. [doi:10.1126/science.287.5453.637]

    Article  Google Scholar 

  • Zaiser, M., 1999. Self-compression and diamond nucleation in irradiated carbon onions: a theoretical model. Materials Research Society Symposium Proceedings, 540:243–248.

    Article  Google Scholar 

  • Zobelli, A., Gloter, A., Ewels, C.P., Seifert, G., Colliex, C., 2007. Electron knock-on cross section of carbon and boron nitride nanotubes. Physical Review B, 75(24): 245402. [doi:10.1103/PhysRevB.75.245402]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jefferson Zhe Liu or Quan-shui Zheng.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2007CB936803), the National High-Tech R&D Program (863) of China (No. 2008AA03Z302), the National Natural Science Foundation of China (No. 10832005), and the Joint Research Scheme of the National Natural Science Foundation of China and Research Grants Council of Hong Kong (No. 50518003)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Md., Liu, J.Z., Wang, Lf. et al. Effects of vacancies on interwall spacings of multi-walled carbon nanotubes. J. Zhejiang Univ. Sci. A 11, 714–721 (2010). https://doi.org/10.1631/jzus.A1000174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1000174

Key words

CLC number

Navigation