Czech J. Anim. Sci., 2010, 55(6):221-226 | DOI: 10.17221/183/2009-CJAS

Evaluation of 11 microsatellite loci for their use in paternity testing in Yugoslav Pied cattle (YU Simmental cattle)

J. Stevanovic1, Z. Stanimirovic1, V. Dimitrijevic2, M. Maletic1
1 Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
2 Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia

Eleven microsatellite loci (TGLA227, BM2113, TGLA53, ETH10, SPS115, TGLA126, TGLA122, INRA023, ETH3, ETH225, BM1824) were evaluated for their use in paternity testing in the Yugoslav Pied cattle (YU Simmental cattle) population in Serbia. A total of 40 animals were tested. At the 11 tested loci, a total of 91 alleles were detected. The mean number of alleles per locus was 8.273. Polymorphism information content (PIC) values ranged from 0.58 to 0.88 with the mean value of 0.72. The most informative loci were: TGLA53 (14 alleles, PIC = 0.88), TGLA227 (11 alleles, PIC = 0.82), INRA023 (11 alleles, PIC = 0.86), BM2113 (9 alleles, PIC = 0.80). Combined power of discrimination (CPD) for the 11 microsatellite loci was 0.999. The results of the present study confirm that the analysed set of 11 microsatellite markers recommended by ISAG is suitable for paternity testing in Yugoslav Pied cattle in Serbia.

Keywords: molecular markers; informativeness; bovines; pedigree; Serbia

Published: June 30, 2010  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Stevanovic J, Stanimirovic Z, Dimitrijevic V, Maletic M. Evaluation of 11 microsatellite loci for their use in paternity testing in Yugoslav Pied cattle (YU Simmental cattle). Czech J. Anim. Sci.. 2010;55(6):221-226. doi: 10.17221/183/2009-CJAS.
Download citation

References

  1. Banos G., Wiggans G.R., Powell R.L. (2001): Impact of paternity errors in cow identification on genetic evaluations and international comparisons. Journal of Dairy Science, 84, 2523-2529. Go to original source... Go to PubMed...
  2. Brenner C., Morris J. (1990): Paternity index calculations in single locus hypervariable DNA probes: Validation and other studies. In: Proceedings for the International Symposium on Human Identification. Promega Corporation, Madison, USA, 21-59.
  3. Carolino I., Sousa C.O., Ferreira S., Carolino N., Silva F. S., Gama L.T. (2009): Implementation of a parentage control system in Portuguese beef-cattle with a panel of microsatellite markers. Genetics and Molecular Biology, 32, 306-311. Go to original source... Go to PubMed...
  4. Cervini M., Henrique-Silva F., Mortari N., Matheucci E. Jr. (2006): Genetic variability of 10 microsatellite markers in the characterization of Brazilian Nellore cattle (Bos indicus). Genetics and Molecular Biology, 29, 486-490. Go to original source...
  5. Choroszy B., Janik A., Choroszy Z., Zabek T. (2006): Polymorphism of selected microsatellite DNA sequences in Simmental cattle chosen for identification of QTLs for meat traits. Animal Science Papers and Reports, 24, 71-77.
  6. Curi R.A., Lopes C.R. (2002): Evaluation of nine microsatellite loci and misidentification paternity frequency in a population of Gyr breed bovines. Brazilian Journal of Veterinary Research and Animal Science, 39, 129-135. Go to original source...
  7. Czerneková V., Kott T., Dudková Z, Sztankoová A., Soldat J. (2006): Genetic diversity between seven Central European cattle breeds as revealed by microsatellite analysis. Czech Journal of Animal Science, 51, 1-7. Go to original source...
  8. Čítek J., Řehout V. (2001): Evaluation of the genetic diversity in cattle using microsatellites and protein markers. Czech Journal of Animal Science, 46, 393-400.
  9. Čítek J., Panicke L., Řehout V., Procházková H. (2006): Study of genetic distances between cattle breeds of Central Europe. Czech Journal of Animal Science, 51, 429-436. Go to original source...
  10. Excoffier L., Laval G., Schneider S. (2006): Arlequin ver 3.1 user manual. Available at: http://cmpg.unibe.ch/software/arlequin3
  11. Garza J.C., Williamson E.G. (2001): Detection of reduction in population size using data from microsatellite loci. Molecular Ecology, 10, 305-318. Go to original source... Go to PubMed...
  12. Grzybowski G., Prusak B. (2004a): Genetic variation in nine European cattle breeds as determined on the basis of microsatellite markers. II. Gene migration and genetic distance. Animal Science Papers and Reports, 22, 37-44.
  13. Grzybowski G., Prusak B. (2004b): Genetic variation in nine European cattle breeds as determined on the basis of microsatellite markers. III. Genetic integrity of the Polish Red cattle included in the breeds preservation programme. Animal Science Papers and Reports, 22, 45-56.
  14. Guo S., Thompson E. (1992): Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics, 48, 361-372. Go to original source... Go to PubMed...
  15. Heyen D.W., Beever J.E., Da Y., Evert R.E., Gren C., Bates S.R., Ziegle J.S., Lewin H.A. (1997): Exclusion probabilities of 22 bovine microsatellite markers in fluorescent multiplexes for semiautomated parentage testing. Animal Genetics, 28, 21-27. Go to original source... Go to PubMed...
  16. ISAG Conference (2006): Porto Seguro, Brazil. Cattle Molecular Markers and Parentage Testing Workshop. Available at : http://www.isag.org.uk/ISAG/all/ISAG2006_CMMPT.pdf
  17. ISAG Conference (2008): Amsterdam, the Netherlands. Cattle Molecular Markers and Parentage Testing Workshop. Available at: http://www.isag.org.uk/ISAG/all/ISAG2008_CattleParentage.pdf
  18. Janík A., Žábek T., Radko A., Natonek M. (2001): Evaluation of polymorphism at 11 microsatellite loci in Simmental cattle raised in Poland. Annals of Animal Science, 1, 19-29.
  19. Kučerová J., Matějíček A., Jandurová O.M., Sorensen P., Němcová E., Štípková M., Kott T., Bouška J., Frelich J. (2006): Milk protein gene CSN1S1, CSN2, CSN3, LGB and their relation to genetic values of milk production parameters in Czech Fleckvieh. Czech Journal of Animal Science, 51, 241-247. Go to original source...
  20. Matějíček A., Matějíčková J., Němcová E., Jandurová O.M., Štípková M., Bouška J., Frelich J. (2007): Joint effect of CSN3 and LGB genotypes and their relation to breeding values of milk production parameters in Czech Fleckvieh. Czech Journal of Animal Science, 52, 83-87. Go to original source...
  21. Nei M. (1987): Molecular Evolutionary Genetics. Columbia University Press, New York, USA. Go to original source...
  22. Ozkan E., Soysal M.I., Ozder M., Koban E., Sahin O., Togan I. (2009): Evaluation of parentage testing in the Turkish Holstein population based on 12 microsatellite loci. Livestock Science, 124, 101-106. Go to original source...
  23. Perez-Miranda A.M., Alfonso-Sanchez M.A., Pena J.A., De Pancorbo M.M., Herrera R.J. (2005): Genetic polymorphisms at 13 STR loci in autochthonous Basques from the province of Alava (Spain). Legal Medicine. 7, 58-61. Go to original source... Go to PubMed...
  24. Přibyl J. (1995): A way of using markers for farm animal selection. Czech Journal of Animal Science, 40, 375-382.
  25. Přibyl J., Šafus P., Štípková M., Stádnik L., Čermák V. (2004): Selection index for bulls of Holstein cattle in the Czech Republic. Czech Journal of Animal Science, 49, 244-256. Go to original source...
  26. Radko A. (2008): Microsatellite DNA polymorphism and its usefulness for pedigree verification of cattle raised in Poland. Annals of Animal Science, 8, 311-321.
  27. Radko A., Zyga A., Zabek T., Slota E. (2005): Genetic variability among Polish Red, Hereford and HolsteinFriesian cattle raised in Poland based on analysis of microsatellite DNA sequences. Journal of Applied Genetics, 46, 89-91. Go to PubMed...
  28. Řehout V., Hradecká E., Čítek J. (2006): Evaluation of parentage testing in the Czech population of Holstein cattle. Czech Journal of Animal Science, 51, 503-509. Go to original source...
  29. Soldatovic B., Vucinic M., Stanimirovic Z., Djokic D., Vucicevic M. (1993): A mosaicism with karyotype designation of 59.XO/60, XX/61,XXX in red pied heifer (part III). Acta Veterinaria, 43, 335-340.
  30. Soldatovic B., Stanimirovic Z., Vucinic M., Djokic D., Vucicevic M. (1994a): Robertsonian fusion in a Simmental cow-bull mother (part II). Acta Veterinaria, 44, 173-178.
  31. Soldatovic B., Vucinic M., Stanimirovic Z., Djokic D, Vucicevic M. (1994b): The aberrant karyotype of a bull with characteristic of Klinefelter's syndrome (part I). Acta Veterinaria, 44, 33-36.
  32. Taylor G.R. (1997): Laboratory methods for the detection of mutations and polymorphisms in DNA. CRC Press Inc., Boca Raton, USA, 333.
  33. Tian F., Sun D., Zhang Y. (2008): Establishment of paternity testing system using microsatellite markers in Chinese Holstein. Journal of Genetics and Genomics, 35, 279-284. Go to original source... Go to PubMed...
  34. Vankan D.M., Faddy M.J. (1999): Estimations of the efficacy and reliability of paternity assignments from DNA microsatellite analysis of multiple-sire matings. Animal Genetics, 30, 355-361. Go to original source... Go to PubMed...
  35. Visscher P.M., Woolliams J.A., Smith D., Williams J.L. (2002): Estimation of pedigree errors in the UK dairy population using microsatellite markers and the impact on selection. Journal of Dairy Science, 85, 2368-2375. Go to original source... Go to PubMed...
  36. Vucinic M., Soldatovic B., Stanimirovic Z. (1996): Robertsonian translocation T1/29 in the bovine karyotype. Strategia and Faculty of Veterinary Medicine University of Belgrade, Belgrade, Serbia, 1-163. (in Serbian)
  37. Zaton-Dobrowolska M., Čítek J., Filistowicz A., Řehout V., Szulc T. (2007): Genetic distance between the Polish Red, Czech Red and German Red cattle estimated based on selected loci of protein coding genes and DNA microsatellite sequences. Animal Science Papers and Reports, 25, 45-54.
  38. Zhou G.L., Jin H.G., Zhu Q., Guo S.L., Wu Y.H. (2005): Genetic diversity analysis of five cattle breeds native to China using microsatellites. Journal of Genetics, 84, 77-80. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.