Plant Soil Environ., 2007, 53(1):7-15 | DOI: 10.17221/3188-PSE

Phytoremediation based on canola (Brassica napus L.) and Indian mustard (Brassica juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb, and Zn

M. Turan, A. Esringü
Faculty of Agriculture, Atatürk University, Erzurum, Turkey

The use of plants to remove heavy metals from soil (phytoremediation) is expanding due to its cost-effectiveness as compared to conventional methods and it has revealed a great potential. Since contaminants such as Pb or Cd have a limited bioavailability in the soil, methods to facilitate their transport to the shoots and roots of plants are required for successful phytoremediation. The objective of this study was to investigate the effects of addition of different rates (0, 3, 6 and 12 mmol/kg) of ethylene diaminetetraacetate (EDTA) on heavy metal availability in soils contaminated with 50 mg/kg Cd (CdCl2), 50 mg/kg Cu (CuSO4), 50 mg/kg Pb [Pb(NO3)2] and 50 mg/kg Zn (ZnSO4), and on the capacity of canola (Brassica napus L.) and Indian mustard (Brassica junceaL.) plants to uptake Cu, Cd, Pb and Zn in a growth chamber. Results indicated that EDTA application increased heavy metal availability and uptake by plants. Significant differences were obtained in both species and plant parts. As for plant species tested, canola was more effective in the uptake of Cu, Cd, Pb and Zn. Root heavy metal uptake of both species was higher than shoot heavy metal uptake.

Keywords: canola; Indian mustard; heavy metal availability; EDTA; phytoextraction

Published: January 31, 2007  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Turan M, Esringü A. Phytoremediation based on canola (Brassica napus L.) and Indian mustard (Brassica juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb, and Zn. Plant Soil Environ.. 2007;53(1):7-15. doi: 10.17221/3188-PSE.
Download citation

References

  1. AOAC (1990): In: Helrich K. (eds.): Official Methods of Analysis of the Association of Official Analytical Chemists. Washington, DC.
  2. Baker A.J.M. (1981): Accumulators and excluders: strategies in response of plants to trace elements. J. Plant Nutr., 3: 643-654. Go to original source...
  3. Baker A.J.M. (1995): Metal hyper-accumulation by plants: our present knowledge of the eco-physiological phenomenon. Will plants have a role in bio-remediation? 14 th Ann. Symp. Current topics in plant biochemistry, physiology and molecular biology, Columbia, MO: 7-8.
  4. Blaylock M.J., Salt D.E., Dushenkov S., Zakharova O., Gussman C., Kapulnik Y., Ensley B.D., Raskin I. (1997): Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol., 31: 860-865. Go to original source...
  5. Brown G.A., Elliott H.A. (1992): Influence of electrolytes on EDTA extraction of Pb from polluted soil. Water Air Soil Pollut., 62: 157-165. Go to original source...
  6. Brun L.A., Maillet J., Hinsinger P., Pepin M. (2001): Evaluation of copper availability to plants in copper-contaminated vineyard soils. Environ. Pollut., 111: 293-302. Go to original source... Go to PubMed...
  7. Chatterjee J., Chatterjee C. (2000): Phytotoxicity of cobalt, chromium and copper in cauliflower. Environ. Pollut., 109: 69-74. Go to original source... Go to PubMed...
  8. Chen H., Cutright T. (2001): EDTA and HEDTA effects on Cd, Cr and Ni uptake by Helianthus annus. Chemosphere, 45: 21-28. Go to original source... Go to PubMed...
  9. Chen Y.X., Lin Q., Luo Y.M., He Y.F., Zhen S.J., Yu Y.L., Tian G.M., Wong M.H. (2003): The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere, 50: 807-811. Go to original source... Go to PubMed...
  10. Ebbs D.S., Kochian L.V. (1997): Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J. Environ. Qual., 26: 776-719. Go to original source...
  11. Elless M.P., Blaylock M.J. (2000): Amendment optimization to enhance lead extractability from contaminated soils for phytoremediation. Int. J. Phytoremed., 2: 75-89. Go to original source...
  12. Elliott H.A., Brown G.A. (1989): Comparative evaluation of NTA and EDTA for extractive decontamination of Pb-polluted soils. Water Air Soil Pollut., 45: 361-369. Go to original source...
  13. EPA (U.S. Environmental Protection Agency) (2000): Introduction to Phytoremediation. National Risk Management Research Laboratory, Office of Research and Development, EPA/600/R-99/107.
  14. Epstein A., Gussman C.D., Blaylock M.J., Yermiyahu U., Huang J.W., Kapulnik Y., Orser C. (1999): EDTA and Pb-EDTA accumulation in Brassica juncea grown in Pb-amended soil. Plant Soil, 208: 87-94. Go to original source...
  15. Evangelou V.P., Marsi M. (2001): Composition and metal ion complexion behaviour of humic fractions derived from corn tissue. Plant Soil, 229: 13-24. Go to original source...
  16. Finžgar N., Kos B., Lestan D. (2006): Bioavailability and mobility of Pb after soil treatment with different remediation methods. Plant Soil Environ., 52: 25-34. Go to original source...
  17. Fischerová Z., Száková J., Pavlíková D., Tlustoš P. (2005): The application of diffusive gradient technique (DGT) for assessment of changes in Cd, Pb, and Zn mobility in rhizosphere. Plant Soil Environ., 51: 532-538. Go to original source...
  18. Gardea-Torresdey J.L., Peralta-Videa J.R., Montes M., de la Rosa G., Corral-Diaz B. (2004): Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Biores. Technol., 92: 229-235. Go to original source... Go to PubMed...
  19. Hajiboland R. (2005): An evaluation of the efficiency of cultural plants to remove heavy metals from growing medium. Plant Soil Environ., 51: 156-164. Go to original source...
  20. Heil D.M., Samani Z., Hanson A.T., Rudd B. (1999): Remediation of lead contaminated soil by EDTA. I. Batch and column studies. Water Air Soil Pollut., 113: 77-95. Go to original source...
  21. Herawati N., Susuki S.,Hayashi K., Rivai I.F., Koyama H. (2000): Cadmium, copper and zinc levels in rice and soil of Japan, Indonesia, and China by soil type. Bull. Environ. Contam. Toxicol., 64: 33-39. Go to original source... Go to PubMed...
  22. Huang J.W., Chen J., Berti W.R. Cunnigham S.D. (1997): Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction. Environ. Sci. Technol., 31: 800-805. Go to original source...
  23. Irenem M.C.L.O., Yang X.Y. (1999): EDTA extraction of heavy metals from different soil fractions and synthetic soils. Water Air Soil Pollut., 109: 219-236.
  24. Kim S.O., Moon S.H., Kim K.W. (2001): Removal of heavy metals from soils using enhanced electro kinetic soil processing. Water Air Soil Pollut., 125: 259-272. Go to original source...
  25. Kirkham M.B. (2000): EDTA-facilitated phytoremediation of soil with heavy metals from sewage sludge. Int. J. Phytoremed., 2: 159-172. Go to original source...
  26. Kramer U., Pickering I.J., Prince R.C., Raskin I., Salt D E. (2000): Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol., 122: 1343-1353. Go to original source... Go to PubMed...
  27. Kumar P.B.A.N., Dushenkov S., Motto H., Raskin I. (1995): Phytoextraction: the use of plants to remove heavy metals from soils. Environ. Sci. Technol., 29: 1232-1238. Go to original source... Go to PubMed...
  28. Lasat M.M. (2000): Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J. Hazard. Subst. Res., Vol. 2-5. Go to original source...
  29. Lesage E., Meers E., Vervaekle P., Lamsal S., Hopgood M., Tack F.M.G., Verloo M.G. (2005): Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Heliantus annus from a calcareous soil. Int. J. Phytoremed., 7: 143-152. Go to original source... Go to PubMed...
  30. Lim J., Salido A.L., Butcher D.J. (2004): Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics. Microchem. J., 76: 3-9. Go to original source...
  31. Liphadzi M.S., Kirkham M.B., Mankin K.R., Paulsen G.M. (2003): EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewagesludge farm. Plant Soil, 257: 171-82. Go to original source...
  32. Ma J.F., Ryan P.R., Delhaize E. (2001): Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci., 6: 273-278. Go to original source... Go to PubMed...
  33. Marchiol L., Assolari S., Sacco P., Zerbi G. (2004): Phytoextraction of heavy metals by canola (Brassica nopus) and radish (Raphanus sativus) grown on multicontaminated soil. Environ. Pollut., 132: 21-27. Go to original source... Go to PubMed...
  34. Meers E., Lesage E., Lamsal S., Hopgood M., Vervaekle P., Tack F.M.G., Verloo M.G. (2005): Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal uptake by Heliantus annus from a calcareous soil. Int. J. Phytoremed., 7: 129-142. Go to original source... Go to PubMed...
  35. Naidu R., Harter R.D. (1998): Effect of different organic ligands on cadmium sorption by and extractability from soils. Soil Sci. Soc. Am. J., 62: 644-650. Go to original source...
  36. Nigam R., Srivastava S., Prakash S., Srivastava M.M. (2001): Cadmium mobilization and plant availability - the impact of organic acids commonly exudated from roots. Plant Soil, 230: 107-113. Go to original source...
  37. Papassiopi N., Tambouris S., Kontopoulos A. (1999). Removal of heavy metals from calcareous contaminated soils by EDTA leaching. Water Air Soil Pollut., 109: 1-15. Go to original source...
  38. Peralta-Videa J.R., Gardea-Torresdey J.L., Gomez E., Tiemann K.J., Parsons J.G., Carrillo G. (2002): Effect of mixed cadmium, copper, nickel and zinc different pHs upon alfalfa growth and heavy metal uptake. Environ. Pollut., 119: 291-301. Go to original source... Go to PubMed...
  39. Institute SAS 1982. SAS Users Guide. SAS Inst., Cary, N.C.
  40. Sagner S., Kneer R., Wanner G., Cosson J.P., DeusNeumann B. Zenk M.H. (1998): Hyperaccumulation, complexion and distribution of nickel in Sebertia acuminate. Phytochemistry, 47: 339-347. Go to original source... Go to PubMed...
  41. Salt D.E., Prince R.C., Baker A.M.J., Raskin I., Pickering I.J. (1999): Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ. Sci. Technol., 33: 713-717. Go to original source...
  42. Schnoor J.L. (1997): Phytoremediation. Ground-Water Remediation Technology Analysis Center, Technology Evaluation Report, TE-98-01.
  43. Soil Survey Staff (1992): Keys to Soil Taxonomy 5 th ed. SMSS Techn. Monogr. No. 19, Pocahontas Pres. Inc., Blacksburg.
  44. Thayalakumaran T., Robinson B.H., Vogeler I., Scotter D.R., Clothier B.E., Percival H.J. (2003): Plant uptake and leaching of copper during EDTA-enhanced phytoremediation of repacked and undisturbed soil. Plant Soil, 254: 415-423. Go to original source...
  45. Tlustoš P., Száková J., Hrubý J., Hartman I., Najmanová J., Nedělník J., Pavlíková D., Batysta M. (2006): Removal of As, Cd, Pb, and Zn from contaminated soil by high biomass producing plants. Plant Soil Environ., 52: 413-423. Go to original source...
  46. Turan M., Angin I. (2004): Organic chelate assisted phytoextraction of B, Cd, Mo and Pb from contaminated soils using two agricultural crop species. Acta Agr. Scand., Sec. B, Soil Plant Sci., 54: 221-231. Go to original source...
  47. Turgut C., Pepe M.K., Cutright T.J. (2004): The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ. Pollut., 131: 147-154. Go to original source... Go to PubMed...
  48. Vazquez M.D., Barcelo J., Poschenrieder Ch., Madico J., Hatton P., Baker A.J.M., Cope G.H. (1992): Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metals. J. Plant Physiol., 140: 350-355. Go to original source...
  49. Vogeler I., Green S.R., Clothier B.E., Kirkham M.B., Robinson B.H. (2001): Contaminant transport in the root zone. In: Iskandar I.K., Kirkham M.B. (eds.): Trace Elements in Soils: Bioavailability, Flux, and Transfer. Lewis, Publ., Boca Raton, Florida: 175-197. Go to original source...
  50. Vysloužilová M., Tlustoš P., Száková J. (2003): Cadmium and zinc phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soil. Plant Soil Environ., 49: 542-547. Go to original source...
  51. Wu L.H., Luo Y.M., Xing X.R., Christie P. (2004): EDTAenhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agr. Ecosyst. Environ., 102: 307-318. Go to original source...
  52. Yang X.E., Baligar V.C., Foster J.C., Martens D.C. (1997): Accumulation and transport of nickel in relation to organic acids in r yegrass and maize grown with different nickel levels. Plant Soil, 196: 271-276. Go to original source...
  53. Yanqun Z., Yuan L., Schvartz C., Langlade L., Fan L. (2004): Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China. Environ. Int., 30: 567-576. Go to original source... Go to PubMed...
  54. Zantopoulos N., Antoniou V., Nikolaidis E. (1999): Copper, zinc, cadmium, and lead in sheep grazing in North Greece. Bull. Environ. Contam. Toxicol., 62: 691-699. Go to original source... Go to PubMed...
  55. Zayed A., Gowthaman S., Terry N. (1998): Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J. Environ. Qual., 27: 715-721. Go to original source...
  56. Zhang X., Ervin E.H., Schmidt R.E. (2003): Plant growth regulators can enhance the recovery of Kentucky bluegrass sod from heat in Jury. Crop Sci., 43: 952-956. Go to original source...
  57. Zhang X., Schmidt R.E. (2000): Hormone-containing products' impact on antioxidant status of tall fescue and creeping bent grass subjected to drought. Crop Sci., 40: 1344-1349. Go to original source...
  58. Zhao F.J., Lombi E., McGrath S.P. (2003): Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant Soil, 249: 37-43. Go to original source...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.