The effect of taurine on state of experimental gestosis in rats

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Gestosis (preeclampsia) is an important problem of modern obstetrics. Despite the improvement of methods of prevention and treatment, there is an increase in the rate of this pregnancy complication. In this regard, the search for new approaches to the treatment of preeclampsia is an important problem of modern perinatology.

AIM: The aim of this study is studying of the effect of taurine on experimental gestosis in rats.

MATERIALS AND METHODS: Preeclampsia was induced on female rats by sodium nitrite and lipopolysaccharide. 2-aminoethanesulfonic acid was administered at a dose of 44.3 mg / kg (in terms of taurine) from the 16th to the 19th day of pregnancy. The number of implantation sites, resorption sites, live fetuses, weight of placentas and fetuses, lactate dehydrogenase activity, content of lactic and pyruvic acids, nitric oxide, malondialdehyde and creatine were evaluated.

RESULTS: It has been shown that 2-aminoethanesulfonic acid leads to normalization of the metabolic processes (the level of malondialdehyde, nitric oxide, lactate and lactate dehydrogenase activity) in the body of pregnant female rats with induced preeclampsia in the last trimester of pregnancy. Taurine reduced the quantity of resorption, increased the weight of placentas and fetuses. Along with a correction of the lactate level, pyruvate and lactate dehydrogenase activity, it was observed a decrease of creatine level in placentas.

CONCLUSIONS: Obtained results allows us to recommend taurine, which has antioxidant, antihypoxic, membrane stabilizing, detoxifying, osmoregulating and diuretic effects, for the treatment of placental disorders with preeclampsia.

Full Text

Restricted Access

About the authors

Tatiana N. Savanteeva-Lyubimova

Smorodintsev Research Institute of Influenza

Email: drugs_safety@mail.ru
ORCID iD: 0000-0003-4516-3308
SPIN-code: 3543-6799

MD, Dr. Sci (Med.), Professor, leading research associate of the laboratory of drug safety

Russian Federation, Saint Petersburg

Konstantin V. Sivak

Smorodintsev Research Institute of Influenza

Email: kvsivak@gmail.com
ORCID iD: 0000-0003-4064-5033
SPIN-code: 7426-8322

Cand. Sci. (Med.) head of Department of preclinical trials

Russian Federation, Saint Petersburg

Kira I. Stosman

Smorodintsev Research Institute of Influenza

Author for correspondence.
Email: labtox6@rambler.ru
ORCID iD: 0000-0001-7959-2376
SPIN-code: 8423-0170

Cand. Sci. (Med.), senior research associate of the laboratory of drug safety

Russian Federation, Saint Petersburg

Andrei G. Aleksandrov

Smorodintsev Research Institute of Influenza

Email: forphchemistry@gmail.com
ORCID iD: 0000-0001-9212-3865

Cand. Sci. (Med.), research associate of the laboratory of drug safety

Russian Federation, Saint Petersburg

References

  1. Aylamasyan EK. Gestoz: teoriya i praktika. Aylamasyan EK, Mozgovaya EV, eds. Moscow: MEDpress-inform; 2008. 271 p. (In Russ.)
  2. Mol BWJ, Thangaratinam S, Magee LA, et al. Pre-eclampsia. Lancet. 2016;10022(387):999–1011. doi: 10.1016/SO140-6736 (15)00070-7
  3. Chen X, Andresen BT, Hill M, et al. Role of reactive oxygen species in tumor necrosis factor-alpha induced endothelial dysfunction. Curr Hypertens. 2008;4(4):245–255. doi: 10.2174/157340208786241336
  4. Alfaidy N, Chauvet S, Andrei S, et al. Prion protein expression and functional importance in developmental angiogenesis: Role in oxidative stress and copper homeostasis. Antioxid Redox Signal. 2013;18(4):400–411. doi: 10.1089/ars.2012.4637
  5. Akinshina SV, Bitsadze VO, Gadaeva ZK, et al. Trombotic microangiopathy in the pathogenesis of obstetric complications. Obstetrics, Gynecology and Reproduction. 2015;9(2):62–71. (In Russ.) doi: 10.17749/2070-4968.2015.9.2.062-71
  6. Holwerda KM, Karumanchi SA, Lely AT. Hydrogen sulfide: Role in vascular physiology and pathology. Curr Opin Nephrol Hypertens. 2015;24(2):170–176. doi: 10.1097/MNH.0000000000000096
  7. Jiang Z, Zou Y, Ge Z, et al. A role of sFlt-1 in oxidative stress and apoptosis in human and mouse pre-eclamptic trophoblasts. Biol Reprod. 2015;93(3):73. doi: 10.1095/biolreprod.114.126227
  8. Levkovich MA, Plahotya TG, Berdichevskaya EM, et al. Summary peculiarities of cytokine regulation in chronic placental insufficiency. Modern Problems of Science and Education. 2016;(4):18. (In Russ.)
  9. Adu-Bonsaffoh K, Antwi DA, Gyan B, et al. Endothelial dysfunction in the pathogenesis of pre-eclampsia in Ghanaian women. BMC Physiol. 2017;17:5. doi: 10.1186/s12899-017-0029-4
  10. Perucci LO, Correa MD, Dusse LM, et al. Resolution of inflammation pathways in preeclampsia-a narrative review. Immunol Res. 2017;65(4):774–789. doi: 10.1007/s12026-017-8921-3
  11. Hu TX, Guo X, Wang G, et al. MIR133b is involved in endogenous hydrogen sulfide suppression of sFlt-1 production in human placenta. Placenta. 2017;52:33–40. doi: 10.1016/j.placenta.2017.02.012
  12. Baczyk D, Audette MC, Coyaud E, et al. Spatiotemporal distribution of sumos during human placental development and in response to oxidative and inflammatory stress. J Physiol. 2018;596(9): 1587–1600. doi: 10.1113/JP275288
  13. Aouache R, Biquard L, Vaiman D, et al. Oxidative stress in preeclampsia and placental diseases. Int J Mol Sci. 2018;19(5):1496. doi: 10.3390/ijms19051496
  14. Stojanovska V, Scherjon SA, Plösch T. Preeclampsia as modulator of offspring health. Biol Reprod. 2016;94(3):53. doi: 10.1095/biolreprod.115.135780
  15. Lin S, Leonard D, Co MA, et al. Pre-eclampsia has an adverse impact on maternal and fetal health. Transl Res. 2015;165(4): 449–463. doi: 10.1016/j.trsl.2014.10.006
  16. Wu CS, Nohr E, Bech BH, et al. Health of children born to mothers who had preeclampsia: a population-based cohort study. Am J Obstet Gynecol. 2009;201(3):269.e1–269.e10. doi: 10.1016/j.ajog.2009.06.060
  17. Kiseleva NI, Zanko SN, Solodkov AP. Aktualnye problemy gestoza (patogenez, diagnostika, profilaktika i lechenie). Vitebsk: VSMU; 2007. 196 p. (In Russ.)
  18. Gong P, Liu M, Hong G, et al. Curcumin improves LPS-induced preeclampsia-like phenotype in rat by inhibiting the TLR4 signaling pathway. Placenta. 2016;41:45–52. doi: 10.1016/j.placenta.2016.03.002
  19. Hu J, Zhang J, Zhu B. Protective effect of metformin on a rat model of lipopolysaccharide-induced preeclampsia. Fundam Clin Pharmacol. 2019;33(6):649–658. doi: 10.1111/fcp.12501
  20. Muzyko EA, Perfilova VN, Tyurenkov IN, et al. Effect of early and late pharmacological correction with GABA derivatives on cognitive disorders in offspring of rats with experimental preeclampsia. I.P. Pavlov Russian Medical Biological Herald. 2021;29(3):337–346. (In Russ.) doi: 10.17816/PAVLOVJ61054
  21. Li G, Wei W, Suo L, Zhang C, et al. Low-dose aspirin prevents kidney damage in LPS-induced preeclampsia by inhibiting the WNT5A and NF-κB signaling pathways. Front Endocrinol (Lausanne). 2021;12:639592. doi: 10.3389/fendo.2021.639592
  22. Li Y, Liu Y, Chen J, Hu J. Protective effect of Fisetin on the lipopolysaccharide-induced preeclampsia-like rats. Hypertens Pregnancy. 2022;41(1):23–30. doi: 10.1080/10641955.2021.2013874
  23. Abdelzaher WY, Mostafa-Hedeab G, Bahaa HA, et al. Leukotriene receptor antagonist, montelukast ameliorates L-NAME-induced pre-eclampsia in rats through suppressing the IL-6/Jak2/STAT3 signaling pathway. Pharmaceuticals (Basel). 2022;15(8):914. doi: 10.3390/ph15080914settings
  24. Tao X, Zhang Zh, Yang Zh, et al. The effects of taurine supplementation on diabetes mellitus in humans: A systematic review and meta-analysis. Food Chemistry: Molecular Sciences. 2022;4:100106. doi: 10.1016/j.fochms.2022.100106
  25. Bkaily Gh, Jazzar A, Normand A, et al. Taurine and cardiac disease: state of the art and perspectives. Can J Physiol Pharmacol. 2002;98(2):67–73. doi: 10.1139/cjpp-2019-1313
  26. Bae V, Ahmad K, Yin JE. Beneficial effects of taurine on metabolic parameters in animal and humans. J Obes metabol Syndr. 2022;31(2):134–146. doi: 10.7570/jomes21088
  27. Agökçeoğlu A, Yarim GF, Yarim M. The effects of taurine on central nervous system. Harran Üniv Vet Fak Derg. 2020;9(2):214–219. doi: 10.31196/huvfd.75131
  28. Castelli V, Paladini A, d’Angelo M, et al. Taurine and oxidative stress in retinal health and disease. CNS Neurosci Ther. 2021;27(4):403–412. doi: 10.1111/cns.13610
  29. Tochitani Sh. Taurine: a maternally derived nutrient linking mother and offspring. Metabolites. 2022;12(3):228. doi: 10.3390/metabolo12030228
  30. Shivananjappa MM, Muralidhara. Taurine attenuates maternal and embryonic oxidative stress in a streptozotocin-diabetic rat model. Reprod Biomed Online. 2012;24(5):558–566. doi: 10.1016/j.rbmo.2012.01.016
  31. Davydovskii A.G. Poisk sposobov korrektsii metabolicheskikh narushenii pri gestoze s pomoshchyu test-sistem in vitro (perspektivy test-tekhnologii). Meditsinskii Zhurnal. 2008;(4(26)):21–24. (In Russ.)
  32. Ellery SJ, Murthi P, Della Gatta PA, et al. The effects of early-onset pre-eclampsia on placental creatine metabolism in the third trimester. Int J Mol Sci. 2020;21(3):806. doi: 10.3390/ijms21030806
  33. Muccini AM, Tran NhT, Hale N, et al. The Effects of In Utero Fetal Hypoxia and Creatine Treatment on Mitochondrial Function in the Late Gestation Fetal Sheep Brain. Oxid Med Cell Longev.2022;3255296. doi: 10.1155/2022/3255296
  34. Schaffer S, Kim HW. Effects and mechanisms of taurine as a therapeutic agent. Biomol Ther (Seoul). 2018;26(3):225–241. doi: 10.4062/biomolther.2017.251

Copyright (c) 2023 ECO-vector LLC



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65565 от 04.05.2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies