Efficient and Eco-Friendly Synthesis of Fluorenone Azines by Using Sulphated Titania Acid Catalyst

Article Preview

Abstract:

Conjugated unsymmetrical azines have been synthesized in the presence of acid catalyst sulphated-titania (TiO2-SO42-) from fluorenone hydrazone with substituted aldehydes and acetophenones by using mortar and pestle. The scope of present synthetic route avoid in solvents, simple operating method and shorter reaction time. Special feature of synthetic method is recyclable catalyst for all in reactions.

Info:

Pages:

137-143

Citation:

Online since:

September 2015

Export:

* - Corresponding Author

[1] C.J. Li, Organic reactions in aqueous media with a focus on carbon-carbon bond formations: A decade update, Chem. Rev. 105 (2005) 3095–3165.

DOI: 10.1021/cr030009u

Google Scholar

[2] M. Litvic, I. Vecenaj, Z.M. Ladisic, M. Lovric, V. Vinkovic, M.F. Litvic, First application of hexaaquaaluminium(III) tetrafluoroborate as a mild, recyclable, non-hygroscopic acid catalyst in organic synthesis: a simple and efficient protocol for the multigram scale synthesis of 3,4-dihydropyrimidinones by Biginelli reaction, Tetrahedron. 66 (2010) 3463–3471.

DOI: 10.1002/chin.201039161

Google Scholar

[3] C. Yue, D. Fang, L. Liu, T.F. Yi, Synthesis and application of task-specific ionic liquids used as catalysts and/or solvents in organic unit reactions, J. Mol. Liq. 163 (2011) 99–12.

DOI: 10.1016/j.molliq.2011.09.001

Google Scholar

[4] B.M. Reddy, P.M. Sreekanth, V.R. Reddy, Modified zirconia solid acid catalysts for organic synthesis and transformations, J. Mol. Catal. A: Chem. 225 (2005) 71–78.

DOI: 10.1016/j.molcata.2004.09.003

Google Scholar

[5] J.M. Hopkins, M. Bowdridge, K.N. Robertson, T.S. Cameron, H.A. Jenkins, J.A.C. Clyburne, Generation of Azines by the Reaction of a Nucleophilic Carbene with Diazoalkanes: A Synthetic and Crystallographic Study, J. Org. Chem. 66 (2001) 5713–5716.

DOI: 10.1021/jo001515b

Google Scholar

[6] M.N. Urrutia, F.L. Alovero, C.S. Ortiz, New azine compounds as photoantimicrobial agents against staphylococcus aureus, Dyes. Pigments. 116 (2015) 27–35.

DOI: 10.1016/j.dyepig.2014.12.021

Google Scholar

[7] A. Garg, J.P. Tandon, Coordination behaviour of azines towards iron (II), palladium (II) and platinum (II), Transition, Met. Chem. 13 (1988) 395–397.

DOI: 10.1007/bf01225136

Google Scholar

[8] P. Tsitsa, E.A. Vyzal, S.J. Hamodrakas, E.E. Eliopoulos, A.T. Kakoulidoul, E.L. Hytiroglou, C. Roussakis, I. Chinous, A. Hempe, N. Camermanc, F.P. Ottensmeyer, D.A.V. Berghe, Synthesis, crystal structure and biological properties of a new series of lipophilic S-triazines, dihydrofolate reductase inhibitors, Eur. J. Med. Chem. 28 (1993) 149–158.

DOI: 10.1016/0223-5234(93)90007-2

Google Scholar

[9] I.P. Ferrer, F.H. Urena, N.A.I. Cabeza, S.B.J. Pulido, J.M.M. Martos, M.J.R. Exposito, M.N.M. Carretero, Chloro-fac-tricarbonylrhenium (I) complexes of asymmetric azines derived from 6–acetyl–1,3,7–trimethylpteridine-2,4 (1H,3H)–dione with hydrazine and aromatic aldehydes: Preparation, structural characterization and biological activity against several human tumor cell lines, J. Inorg. Biochem. 103 (2009) 94–100.

DOI: 10.1016/j.jinorgbio.2008.09.014

Google Scholar

[10] K.C. Murdock, R.G. Child, Y. Lin, J.D. Warren, P.F. Fabio, V.J. Lee, P.T. Izzo, S.A. Lang, R.B. Angier, R.V. Citarella, R.E. Wallace, F.E. Durr, Antitumor agents. 2. Bisguanylhydrazones of Anthracene-9,l0-dicarboxaldehydes, J . Med. Chem. 25 (1982) 505–518.

DOI: 10.1021/jm00347a006

Google Scholar

[11] J. Ardaraviciene, B. Barvainiene, T. Malinauskas, V. Jankauskas, K. Arlauskas, V. Getautis, Symmetrical azine-based polymers possessing 1-phenyl-1,2,3,4-tetrahydroquinoline moieties as materials for optoelectronics, React. Funct. Polym. 71 (2011) 1016–1022.

DOI: 10.1016/j.reactfunctpolym.2011.07.005

Google Scholar

[12] J. Safari, S.G. Ravandi, Structure, synthesis and application of azines: a historical perspective, RSC. Adv. 4 (2014) 46224–46249.

DOI: 10.1039/c4ra04870a

Google Scholar

[13] H. Mailer, S. Laskos, Azine liquid crystal compounds for use in light-control devices, Patent , US 4196975 A.

Google Scholar

[14] R. Glaser, N. Knotts, P. Yu, L. Li, M. Chandrasekhar, C. Martinb, C.L. Barnes, Perfect polar stacking of parallel beloamphiphile layers. Synthesis, structure and solid-state optical properties of the unsymmetrical acetophenone azine DCA, Dalton. Trans. (2006) 2891–2899.

DOI: 10.1039/b515739k

Google Scholar

[15] C. McLoughlin, J.A.C. Clyburne, N. Weinberg, Azines: conjugation stoppers or conjugation switches, J. Mater. Chem. 17 (2007) 4304–4308.

DOI: 10.1039/b706964b

Google Scholar

[16] A. Hashidzume, J. Shiota, Y. Ueno, T. Noda, Y. Takashima, A. Harada, M. Kamachi, Polymer formation utilizing 'crisscross' addition (crisscross addition polymerization) of acetaldehyde azine and 1,4-phenylene diisocyanate, Polymer. 47 (2006) 501–505.

DOI: 10.1016/j.polymer.2005.11.056

Google Scholar

[17] R.R. Karimia, H.L. Khouzani, Synthesis of new azines in various reaction conditions and investigation of their cycloaddition reaction, J. Iran. Chem. Soc. 8 (2011) 223–230.

DOI: 10.1007/bf03246219

Google Scholar

[18] H.L. Khouzani, M.M.M. Sadeghi, J. Safari, O.S. Fini, Synthesis of azines from carbonyl compounds in a solvent-free condition, J. Sci. I. R. Iran. 12 (2001) 233–235.

Google Scholar

[19] B. Lee, K.H. Lee, J. Cho, W. Nam, N.H. Hur, Synthesis of azines in solid state: reactivity of solid hydrazine with aldehydes and ketones, Org. Lett. 13 (2011) 6386–6389.

DOI: 10.1021/ol202593g

Google Scholar

[20] M. Lewis, R. Glaser, The azine bridge as a conjugation stopper: An NMR spectroscopic study of electron delocalization in acetophenone, J. Org. Chem. 67 (2002) 1441–1447.

DOI: 10.1021/jo011117o

Google Scholar

[21] C.H. Stapfer, Azines and hydrazones as paint drier accelerators, Patent, US 3630962 A

Google Scholar

[22] K.K. Kononowicz, X. Ligneau, H. Stark, J.C. Schwartz, W. Schunack, Azines and diazines as potential histamine H3-receptor antagonists, Arch. Phm. 328 (1995) 445–450.

DOI: 10.1002/ardp.19953280509

Google Scholar

[23] V. Bertolasi, O. Bortolini, G. Fantin, M. Fogagnolo, D. Perrone, Preparation and characterization of some keto-bile acid azines, steroids. 72 (2007) 756–764.

DOI: 10.1016/j.steroids.2007.06.005

Google Scholar

[24] M.H. Sarvari, E. Safary, Nano-sulfated titania (TiO2/SO42−) as a new solid acid catalyst for Friedel-Crafts acylation and Beckman rearrangement in solvent-free conditions, J. Sulfur. Chem. 32 (2011) 463–473.

DOI: 10.1080/17415993.2011.600313

Google Scholar

[25] K.R.P.S. Devi1, P.B. Sreeja, S. Sugunan, Environmentally benign Friedel-Crafts benzylation over nano-TiO2-SO42−, Int. Nano. Lett. 3:40 (2013) 2–8.

DOI: 10.1186/2228-5326-3-40

Google Scholar

[26] M.H. Sarvari, E. Sodagar, M.M. Doroodmand, Nano sulfated titania as solid acid catalyst in direct synthesis of fatty acid amides, J. Org. Chem. 76 (2011) 2853–2859.

DOI: 10.1021/jo2002769

Google Scholar

[27] B. Krishnakumar, M. Swaminathan, An expeditious and solvent free synthesis of azine derivatives using sulfated anatase-titania as a novel solid acid catalyst, Catal. Commun. 16 (2011) 50–55.

DOI: 10.1016/j.catcom.2011.08.029

Google Scholar

[28] B. Krishnakumar, R. Velmurugan, M. Swaminathan, TiO2–SO42− as a novel solid acid catalyst for highly efficient, solvent free and easy synthesis of chalcones under microwave irradiation, Catal. Commun. 12 (2011) 375–379.

DOI: 10.1016/j.catcom.2010.10.015

Google Scholar

[29] B. Krishnakumar, M. Swaminathan, A convenient method for the N-formylation of amines at room temperature using TiO2-P25 or sulfated titania, J. Mol. Catal. A: Chem. 334 (2011) 98–102.

DOI: 10.1016/j.molcata.2010.11.002

Google Scholar

[30] M.H. Sarvari, S.N. Derikvandi, A. Jarrahpour, R. Heiran, Nano sulfated titania as a heterogeneous solid acid catalyst for the synthesis of pyrroles by clauson-kaas condensation under solvent-free conditions, Chem. Heterocycl. Compd. 49 (2014) 1732–1739.

DOI: 10.1007/s10593-014-1425-3

Google Scholar

[31] A.I. Vogel, A Text Book of Practical Organic Chemistry, third edn, ELBS Longman, London, 1975, p.491–512.

Google Scholar

[32] J.L.R. Vega, A.A. Perez, R. Gomez, M.E.N. Gomez, Sulfated titania [TiO2/SO42−]: A very active solid acid catalyst for the esterification of free fatty acids with ethanol, Appl. Catal. A-Gen. 379 (2010) 24–29.

DOI: 10.1016/j.apcata.2010.02.020

Google Scholar