Praseodymium-Doped Ce0.5Co0.5O2 Catalyst for Use on the Ethanol Steam Reforming to Produce Hydrogen

Article Preview

Abstract:

The catalytic performance of ethanol steam reforming (ESR) reaction was investigated on a praseodymium (Pr) dopant to modify Ce0.5Co0.5O2 catalyst. The Ce0.5Co0.5O2 catalyst was prepared by co-precipitation-oxidation method with NaOH precipitant and H2O2 oxidant. Doped 5 and 10 wt% Pr (Pr5-Ce-Co and Pr10-Ce-Co) catalysts were prepared by an incipient wetness impregnation method and reduced at 250 and 400 °C (H250 and H400). All samples were characterized by using XRD, TPR, BET, EA, TG and TEM techniques at various stages of the catalyst. The results indicated that the doped Pr improved the activity and products distribution, and depressed the deposited carbon. The Pr10-Ce-Co-H400 sample was a highly active and stable among these catalysts, where the hydrogen distribution approached 72% at 475 °C and only minor C1 (CO and CH4) species were detected. In addition, the ethanol conversion still remained complete, and the selectivity of hydrogen exceeded 70% during a 100 h time-on-stream test at 400 °C. The high oxygen storage capacity (OSC) and high accessible oxygen for this catalyst allowed oxidation/gasification of deposited carbon as soon as it formed, and less coke was detected.

Info:

Pages:

13-24

Citation:

Online since:

May 2016

Export:

* - Corresponding Author

[1] M.S. Batista, R.K.S. Santos, E.M. Assaf, J.M. Assaf, E.A. Ticianelli, High efficiency steam reforming of ethanol by cobalt-based catalysts, J. Power Sources 134 (2004) 27-32.

DOI: 10.1016/j.jpowsour.2004.01.052

Google Scholar

[2] D.K. Liguras, D.I. Kondarides, X.E. Verykios, Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts, Appl. Catal. B43 (2003) 345-354.

DOI: 10.1016/s0926-3373(02)00327-2

Google Scholar

[3] J. Llorca, N. Homs, J. Sales, P.R. de la Piscina, Efficient production of hydrogen over supported cobalt catalysts from ethanol steam reforming, J. Catal. 209 (2002) 306-317.

DOI: 10.1006/jcat.2002.3643

Google Scholar

[4] P.D. Vaidya, A.E. Rodrigues, Insights into steam reforming of ethanol to produce hydrogen for fuel cells, Chem. Eng. J. 117 (2006) 39-49.

DOI: 10.1016/j.cej.2005.12.008

Google Scholar

[5] P.K. Cheekatamarla, C.M. Finnerty, Reforming catalysts for hydrogen generation in fuel cell applications, J. Power Sources 160 (2006) 490-499.

DOI: 10.1016/j.jpowsour.2006.04.078

Google Scholar

[6] H. Song, L. Zhang, R.B. Watson, D. Braden, U.S. Ozkan, Investigation of bio-ethanol steam reforming over cobalt-based catalysts, Catal. Today 129 (2007) 346-354.

DOI: 10.1016/j.cattod.2006.11.028

Google Scholar

[7] E.B. Pereira, N. Homs, S. Marti, J.L.G. Fierro, P.R. de la Piscina, Oxidative steam-reforming of ethanol over Co/SiO2, Co-Rh/SiO2 and Co-Ru/SiO2 catalysts: catalytic behavior and deactivation/regeneration processes, J. Catal. 257 (2008) 206-214.

DOI: 10.1016/j.jcat.2008.05.001

Google Scholar

[8] J. Llorca, N. Homs, P.R. de la Piscina, In situ DRIFT-mass spectrometry study of the ethanol steam-reforming reaction over carbonyl-derived Co/ZnO catalysts, J. Catal. 227 (2004) 556-560.

DOI: 10.1016/j.jcat.2004.08.024

Google Scholar

[9] L.P.R. Profeti, E.A. Ticianelli, E.M. Assaf, Co/Al2O3 catalysts promoted with noble meals for production of hydrogen by methane steam reforming, J. Power Sources 175 (2008) 482-489.

DOI: 10.1016/j.jpowsour.2007.09.050

Google Scholar

[10] B. Zhang, X. Tang, Y. Li, W. Cai, Y. Xu, W. Shen, Steam reforming of bio-ethanol for the production of hydrogen over ceria supported Co, Ir and Ni catalysts, Catal. Commun. 7 (2006) 367-372.

DOI: 10.1016/j.catcom.2005.12.014

Google Scholar

[11] H. Wang, J.L. Ye, Y. Liu, Y.D. Lin, Y.N. Qin, Steam reforming of ethanol over Co3O4/CeO2 catalysts prepared by different methods, Catal. Today 129 (2007) 305-312.

DOI: 10.1016/j.cattod.2006.10.012

Google Scholar

[12] P. Ciambelli, V. Palma, A. Ruggiero, Low temperature catalytic steam reforming of ethanol: 1. The effect of the support on the activity and stability of Pt catalysts, Appl. Catal. B96 (2010) 18-27.

DOI: 10.1016/j.apcatb.2010.01.029

Google Scholar

[13] G. Jacobs, P.M. Patterson, U.M. Graham, D.E. Sparks, B.H. Davis, Low temperature water-gas shift: kinetic isotope effect observed for decomposition of surface formates for Pt/ceria catalysts, Appl. Catal. A269 (2004) 63-73.

DOI: 10.1016/j.apcata.2004.03.049

Google Scholar

[14] C. Lamonier, A. Ponchel, A. D'Huysser, L. Jalowiecki-Duhamel, Studies of the Cerium-Metal-Oxygen-Hydrogen system (Metal = Cu, Ni), Catal. Today 50 (1999) 247-259.

DOI: 10.1016/s0920-5861(98)00507-0

Google Scholar

[15] P. Ciambelli, V. Palma, A. Ruggiero, Low temperature catalytic steam reforming of ethanol: 2. Preliminary kinetic investigation of Pt/CeO2 catalysts, Appl. Catal. B96 (2010) 190-197.

DOI: 10.1016/j.apcatb.2010.02.019

Google Scholar

[16] S.M. de Lima, A.M. da Silva, G. Jacobs, B.H. Davis, L.V. Mattos, F.B. Noronha, New approaches to improving catalyst stability over Pt/ceria during ethanol steam reforming: Sn addition and CO2 co-feeding, Appl. Catal. B96 (2010) 387-398.

DOI: 10.1016/j.apcatb.2010.02.036

Google Scholar

[17] B. Zhang, W. Cai, Y. Li, Y. Xu, W. Shen, Hydrogen production by steam reforming of ethanol over an Ir/CeO2 catalyst: Reaction mechanism and stability of the catalyst, Int. J. Hydrogen Energy 33 (2008) 4377-4386.

DOI: 10.1016/j.ijhydene.2008.05.022

Google Scholar

[18] J.Y. Siang, C.C. Lee, C.H. Wang, W.T. Wang, C.Y. Deng, C.T. Yeh, C.B. Wang, Hydrogen production from steam reforming of ethanol using a ceria-supported iridium catalyst: Effect of different ceria supports, Int. J. Hydrogen Energy 35 (2010) 3456-3462.

DOI: 10.1016/j.ijhydene.2010.01.067

Google Scholar

[19] W. Cai, F. Wang, E. Zhan, A.C.V. Veen, C. Mirodatos, W. Shen, Hydrogen production from ethanol over Ir/CeO2 catalysts: A comparative study of steam reforming, partial oxidation and oxidative steam reforming, J. Catal. 257 (2008) 96-107.

DOI: 10.1016/j.jcat.2008.04.009

Google Scholar

[20] J. Llorca, P.R. de la Piscina, J.A. Dalmon, J. Sales, N. Homs, CO-free hydrogen from steam-reforming of bioethanol over ZnO-supported cobalt catalysts: Effect of metallic precursor, Appl. Catal. B43 (2003) 355-369.

DOI: 10.1016/s0926-3373(02)00326-0

Google Scholar

[21] D.R. Mullins, Adsorption of CO and C2H4 on Rh-loaded thin-film praseodymium oxide, Surf. Sci. 556 (2004) 159-170.

DOI: 10.1016/j.susc.2004.03.011

Google Scholar

[22] F. Wang, W. Cai, H. Provendier, Y. Schuurman, C. Descorme, C. Mirodatos, W. Shen, Hydrogen production from ethanol steam reforming over Ir/CeO2 catalysts: enhanced stability by PrOx promotion, Int. J. Hydrogen Energy 36 (2011) 13566-13574.

DOI: 10.1016/j.ijhydene.2011.07.091

Google Scholar

[23] Z. Song, W. Liu, H. Nishiguchi, A. Takami, K. Nagaoka, Y. Takita, The Pr promotion effect on oxygen storage capacity of Ce-Pr oxides studied using a TAP reactor, Appl. Catal. A329 (2007) 86-92.

DOI: 10.1016/j.apcata.2007.06.023

Google Scholar

[24] M.N. Barroso, A.E. Galetti, M.C. Abello, Ni catalysts supported over MgAl2O4 modified with Pr for hydrogen production from ethanol steam reforming, Appl. Catal. A394 (2011) 124-131.

DOI: 10.1016/j.apcata.2010.12.038

Google Scholar

[25] S.S.Y. Lin, H. Daimon, S.Y. Ha, Co/CeO2-ZrO2 catalysts prepared by impregnation and coprecipitation for ethanol steam reforming, Appl. Catal. A366 (2009) 252-261.

DOI: 10.1016/j.apcata.2009.07.010

Google Scholar

[26] G.R. Rao, H.R. Sahu, B.G. Mishra, Surface and catalytic properties of Cu-Ce-O composite oxides prepared by combustion method, Colloids and Surf. A220 (2003) 261-269.

DOI: 10.1016/s0927-7757(03)00080-3

Google Scholar

[27] A. Trovarelli, Catalytic properties of ceria and CeO2-containing materials, Catal. Rev. Sci. Eng. 38 (1996) 439-520.

Google Scholar

[28] T. Masui, Y. Peng, K. Machida, G. Adachi, Reduction behavior of CeO2-ZrO2 solid solution prepared from cerium zirconyl oxalate, Chem. Mater. 10 (1998) 4005-4009.

DOI: 10.1021/cm980443q

Google Scholar

[29] N. Hickey, P. Fornasiero, R.D. Montre, J. Kaspar, M. Graziani, G. Dolcetti, A comparative study of oxygen storage capacity over Ce0.6Zr0.4O2 mixed oxides investigated by temperature-programmed reduction and dynamic OSC measurements, Catal. Lett. 72 (2001) 45-50.

DOI: 10.1023/a:1009096106758

Google Scholar

[30] B.M. Reddy, G. Thrimurthulu, L. Katta, Structural characteristics and catalytic activity of nanocrystalline ceria-praseodymia solid solutions, J. Phys. Chem. C113 (2009) 15882-15890.

DOI: 10.1021/jp903644y

Google Scholar

[31] X. Hu, G. Lu, Investigation of the steam reforming of a series of model compounds derived from bio‐oil for hydrogen production, Appl. Catal. B88 (2009) 376-385.

DOI: 10.1016/j.apcatb.2008.10.021

Google Scholar

[32] Josh Y.Z. Chiou, H.Y. Kung, C.B. Wang, Highly stable and active Ni-doped ordered mesoporous carbon catalyst on the steam reforming of ethanol application, J. Saudi Chem. Soc. Accept (2015).

DOI: 10.1016/j.jscs.2015.10.006

Google Scholar