Main Article Content

Abstract

L-Histidine Barium Chloride dihydrate (LHBC), a semi organic nonlinear optical material was grown from aqueous solution by slow solvent evaporation method at room temperature.  The LHBC crystals were characterized by X-ray powder diffraction analysis.  The presence of functional groups was identified through Fourier Transform Infrared Spectroscopy.  Thermogravimetric and Differential Thermal Analysis confirm that the crystal is stable up to 269oC.  The mechanical properties of the grown crystals have been studied using Vickers microhardness test.  The second harmonic generation behavior of LHBC crystal was tested by Kurtz-Perry powder technique.

Keywords

Crystal growth X-ray diffraction Optical material Thermal studies Nonlinear optics

Article Details

How to Cite
T R, B. (2016). GROWTH AND CHARACTERIZATION OF A SEMIORGANIC NLO MATERIAL: L-HISTIDINE BARIUM CHLORIDE DIHYDRATE. Green Chemistry & Technology Letters, 2(1), 26–30. https://doi.org/10.18510/gctl.2015.215

References

  1. G. Aka, F. Mougel, F. Auge, A. Kahn-Harari, D. Vivien, J.M. Benitez., J. Alloys Comp. 401, 2004, 303-304. DOI: https://doi.org/10.1016/S0925-8388(00)00648-4
  2. D.S. Chemla, J. Zyss (Eds.), Nonlinear Optical Properties of Organic Molecules and Crystals, vols. 1 and 2, Academic Press, New York, 1987.
  3. G. Xing, M. Jiang, Z. Sao, D. Xu, Chin., J. Lasers 14, 1987, 302.
  4. N. Zhang, M. Jiang, D. Yuan, D. Xu, X. Tao, Chin. Phys. Lett. 6, 1989, 280.
  5. H.O. Marcy, L.F. Warren, M.S. Webb, C.A. Ebbers, S.P. Velsko, G.C. Kennedy, G.L.Catella., Appl. Opt. 31 1992 5051. DOI: https://doi.org/10.1364/AO.31.005051
  6. H.L. Bhat., Bull.Mater. Sci.17, 1994, 1233. DOI: https://doi.org/10.1007/BF02747223
  7. H. O. Marcy, M. J. Roskar, L. F. Warren, and P. H. Cunningham., Optical Letters, 20(3), 1995, 252-254. DOI: https://doi.org/10.1364/OL.20.000252
  8. K. Kirubavathi, K. Selvaraju, R. Valluvan, N. Vijayan, S. Kumararaman., Spectrochimica Acta Part A 69, 2008, 1283. DOI: https://doi.org/10.1016/j.saa.2007.07.042
  9. D. Eimerl, S. Velsko, L. Davis, F. Wang, G. Loiacono, G. Kennedy., IEEE Journal of Quantum Electronics 25, 1989, 179. DOI: https://doi.org/10.1109/3.16261
  10. J. Madhavan, S. Aruna, A. Anuradha, D. Premanand, I. Vetha Potheher, K. Thamizharasan, P. Sagayaraj., Optical Materials 29, 2007, 1211. DOI: https://doi.org/10.1016/j.optmat.2006.04.013
  11. S. Dhanuskodi, K. Vasantha, P.A. Angeli Mary., Spectrochimica Acta Part A 66, 2007, 637. DOI: https://doi.org/10.1016/j.saa.2005.06.052
  12. P. Maadeswaran, J. Chandrasekaran, Optik 122, 2011, 1128. DOI: https://doi.org/10.1016/j.ijleo.2010.07.006
  13. R.M. Silverstein, F.X. Webster (Eds.)., Spectrometric Identification of Organic Compounds, sixth ed., John Wiley & Sons, Inc., Canada, 1998, 91-103.
  14. C.M. Earnet., Anal. Chem. 56, 1984, 1471-1475.
  15. H.H. Willard, L.L. Merritt Jr., J.A. Dean, F.A. Settle., Instrumental Methods of Analysis, Wadsworth Publishing Company, USA, 1986.
  16. Reena Ittyachan, S. Xavier Jesu Raja, S.A. Rajasekar, P.Sagayaraj, Material Chemistry and Physics 90, 2005, 10. DOI: https://doi.org/10.1016/j.matchemphys.2004.04.025
  17. S.K. Kurtz, T.T. Perry, J. Appl. Phys 39,1968, 3798. DOI: https://doi.org/10.1063/1.1656857