Banner Portal
Conforto acústico de escritórios em ambiente industrial de usina hidrelétrica
PDF

Palavras-chave

Conforto acústico
Escritórios
Ambiente industrial
Interferência na fala.

Como Citar

MARTINS, Rodrigo Valdeci; MIRANDA, Erasmo Felipe Vergara. Conforto acústico de escritórios em ambiente industrial de usina hidrelétrica. PARC Pesquisa em Arquitetura e Construção, Campinas, SP, v. 10, p. e019029, 2019. DOI: 10.20396/parc.v10i0.8653712. Disponível em: https://periodicos.sbu.unicamp.br/ojs/index.php/parc/article/view/8653712. Acesso em: 1 maio. 2024.

Resumo

A clareza na comunicação, o conforto e a concentração da atenção são fundamentais no desempenho e produtividade dos profissionais que utilizam escritórios em ambientes industriais. A avaliação do conforto acústico nesses escritórios deve considerar a medição de níveis de pressão sonora (NPS), de tempos de reverberação (TR), bem como a quantificação do ruído de fundo e da inteligibilidade da fala. A presente pesquisa teve como objetivo avaliar o conforto acústico de ambientes de escritórios situados na casa de força de uma usina hidrelétrica. Para tanto, a investigação baseou-se na avaliação da interferência do ruído de fundo e do TR na inteligibilidade da fala em seis ambientes de três escritórios, a partir de medições de NPS, da quantificação e análise das curvas critério de ruído NC e RC Mark II, e do Índice de Transmissão da Fala (STI). Os seis ambientes internos também foram avaliados pelo cálculo do TR de Sabine e Eyring. Todos os ambientes não atenderam ao critério de conforto da curva NC 40, apresentando espectros desbalanceados entre 125 e 500 Hz e vibrações perceptíveis nas baixas frequências (16 ou 31,5 Hz) que superaram os 75 dB. Quatro ambientes atenderam aos valores de TR recomendados, mantendo-se entre 0,3 e 0,5 segundo. O STI foi classificado entre ruim e razoável, variando entre 0,2 e 0,5. Conclui-se que ambientes industriais como casas de força de usinas hidrelétricas semelhante as estudadas não favorecem a instalação de escritórios sem interferência no conforto acústico e na comunicação oral dos usuários, sendo necessário um projeto adequado para utilização prolongada em trabalhos intelectuais.

https://doi.org/10.20396/parc.v10i0.8653712
PDF

Referências

AL HORR, Y. et al. Occupant productivity and office indoor environment quality: A review of the literature. Building and Environment, v. 105, p. 369-389, 2016. DOI: https://doi.org/10.1016/j.buildenv.2016.06.001.

ALIABADI, M. et al. Development of an empirical acoustic model for predicting reverberation time in typical industrial workrooms using artificial neural networks. Acta Acustica united with Acustica, v. 100, p. 1090–1097, 2014. DOI: https://doi.org/10.3813/AAA.918788.

ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 10152: Níveis de pressão sonora em ambientes internos a edificações. Brasil, 2017.

ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 12179: Tratamento acústico em recintos fechados. Brasil, 1992.

ANSI/ASA – AMERICAN NATIONAL STANDARDS INSTITUTE / ACOUSTICAL SOCIETY OF AMERICA. ANSI/ASA S3.14. American National Standard for Rating Noise with respect to speech interference. United States of America, 1977.

AS/NZS – AUSTRALIAN / NEW ZEALAND STANDARD. AS/NZS 2107: Acoustics – Recommended design sound levels and reverberation times for building interiors. Australia / New Zealand, 2016.

ASHRAE - AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS. Sound and Vibration. In: ASHRAE. Fundamentals Handbook. Atlanta: American Society of HVAC Engineers, Inc, 2001. cap. 7, p. 7.1-7.18.

AYR, U. et al. A new approach to assessing the performance of noise indices in buildings. Applied Acoustics, v. 64, n. 2, p. 129-145, 2003. DOI: https://doi.org/10.1016/S0003-682X(02)00075-0.

AYR, U.; CIRILLO, E; MARTELLOTTA, F. An experimental study on noise indices in air conditioned offices. Applied Acoustics, v. 62, p. 633-643, 2001. DOI: https://doi.org/10.1016/S0003-682X(00)00072-4.

AYR, U.; CIRILLO, E; MARTELLOTTA, F. Further investigations of a new parameter to assess noise annoyance in air-conditioned buildings. Energy and Buildings, v. 34, p. 765-774, 2002. DOI: https://doi.org/10.1016/S0378-7788(02)00095-6.

BERANEK, L. L. Revised criteria for noise in buildings. Noise Control, v. 3, n. 19, 1957. DOI: https://doi.org/10.1121/1.2369239.

BLAZIER JR, W. E. Revised noise criteria for application in the acoustical design and rating of HVAC systems. Noise Control Engineering Journal, v.16, n. 2, p. 64-73, march-april, 1981. DOI: https://doi.org/10.3397/1.2832172.

BLAZIER JR, W. E. Sound quality consideration in rating noise from heating, ventilating and air conditioning (HVAC) systems in buildings. Noise Control Engineering Journal, v. 43, n. 3, p. 53–63, mai. 1995. DOI: https://doi.org/10.3397/1.2828365.

BLAZIER JR, W. E. RC Mark II: A refined procedure for rating the noise of heating, ventilating, and air-conditioning (HVAC) systems in buildings. Noise Control Engineering Journal, v. 45, N. 6, p. 243-250, 1997. DOI: https://doi.org/10.3397/1.2828446.

BOWDEN, E. E.; WANG, L. M. Appropriate Characterization of Background Noise Levels in the Workplace. Architectural Engineering -- Faculty Publications, 11, 2006.

CHEVRET, P. Release from masking of speech intelligibility due to fluctuating ambient noise in open-plan offices. Applied Acoustics. v. 101, p. 156-167, 2016. DOI https://doi.org/10.1016/j.apacoust.2015.08.010.

CHEVRET, P.; PARIZET, E.; KOSTALLARI, K. A simple sound metric for evaluating sound annoyance in open-plan offices. In: INTERNATIONAL CONGRESS ON NOISE AS A PUBLIC HEALTH PROBLEM, 12., 2017, Zurick. Proceedings [...]. Zurick: ICBEN, 2017. p. 16-29. Disponível em: http://www.icben.org/2017/index.html.

DELLA CROCIATA, S; MARTELLOTTA, F.; SIMONE, A. A measurement procedure to assess indoor environment quality for hypermarket workers. Building and Environment, v. 47, pp. 288-299, 2012. DOI:https://doi.org/10.1016/j.buildenv.2011.07.011.

DELLA CROCIATA, S.; SIMONE, A.; MARTELLOTTA, F. Acoustic comfort evaluation for hypermarket workers. Building and Environment, v. 59, p. 369–378, 2013. DOI: https://doi.org/10.1016/j.buildenv.2012.09.002.

EBISSOU, A.; PARIZET, E.; CHEVRET, P. Use of the Speech Transmission Index for the assessment of sound annoyance in open-plan offices. Applied Acoustics, v. 88, p. 90-95, 2015. DOI:https://doi.org/10.1016/j.apacoust.2014.07.012.

EGAN, M. D. Architectural Acoustics. United States of America: McGraw-Hill, 1988.

EVANS, G. W.; JOHNSON, D. Stress and Open-Office Noise. Journal of Applied Psychology, Michigan, v. 85, n. 5, p. 779-783, out. 2000. DOI: https://doi.org/10.1037/0021-9010.85.5.779.

GALBRUN, L.; KITAPCI, K. Accuracy of speech transmission index predictions based on the reverberation time and signal-to-noise ratio. Applied Acoustics, v. 81, pp. 1-14, 2014. DOI: https://doi.org/10.1016/j.apacoust.2014.02.001.

GOLMOHAMMADI, R.; ALIABADI, M.; NEZAMI, T. An Experimental Study of Acoustic Comfort in Open Space Banks Based on Speech Intelligibility and Noise Annoyance Measures. Archives of Acoustics, v. 42, n. 2, p. 333-347, 2017. DOI: http://dx.doi.org/10.1515%2Faoa-2017-0035.

GONZÁLEZ, C. Evaluación del ruido en ergonomía: criterio RC MARK II. Instituto Nacional de Seguridad e Higiene en el Trabajo - Notas Técnicas de Prevención. Madrid, 2008.

HAAPAKANGAS, A. et al. Effects of unattended speech on performance and subjective distraction: The role of acoustic design in open-plan offices. Applied Acoustics, v. 86, p. 1-16, 2014. DOI:https://doi.org/10.1016/j.apacoust.2014.04.018.

HAKA, M. et al. Performance effects and subjective disturbance of speech in acoustically different office types–a laboratory experiment. Indoor Air, v. 19, p. 454-467, 2009. DOI: https://doi.org/10.1111/j.1600-0668.2009.00608.x.

HEDGE, A. The Open-Plan Office: a systematic investigation of employee reaction of their work environment. Environment and Behavior, v. 14, n. 5, p. 519-542, 1982. DOI: https://doi.org/10.1177%2F0013916582145002.

HODGSON, M.; NOSAL, E. M. Effect of noise and occupancy on optimal reverberation times for speech intelligibility in classrooms. The Journal of the Acoustical Society of America, v. 111, n. 2, pp. 931-939, 2002. DOI:https://doi.org/10.1121/1.1428264.

HONGISTO, V. et al. Acoustic satisfaction in an open-plan office before and after the renovation. In: EUROPEAN CONGRESS AND EXPOSITION ON NOISE CONTROL ENGINEERING, 2012, Prague. Proceedings [...]. Prage: European Acoustics Association & Czech Acoustical Association, 2012. p. 654-659.

HONGISTO, V. et al. Work performance in private office rooms: The effects of sound insulation and sound masking. Building and Environment, v. 104, p. 263-274, 2016. DOI: https://doi.org/10.1016/j.buildenv.2016.04.022.

HOUTGAST, T.; STEENEKEN, H. J. M. The modulation transfer function in room acoustics. Technical Review. Bruel & Kjaer an HBK company, v. 3, p. 3-12, 1985.

HUANG, L. et al. A study on effects of thermals, luminous, and acoustic environments on indoor environmental comfort in offices. Building and Environment, v. 49, p. 304-309, 2011. DOI:https://doi.org/10.1016/j.buildenv.2011.07.022.

IEC – INTERNATIONAL ELECTROTECHNICAL COMMISSION. ICE 60268-16: International Standard: Sound system equipment - Part 16: Objective rating of speech intelligibility by speech transmission index. Switzerland, 2011.

ISO – INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 3382-2: Acoustics – Measurement of room acoustic parameters – Part 2: Reverberation time in ordinary rooms. Suíça, 2008.

ISO – INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 3382-3: Acoustics – Measurement of room acoustic parameters – Part 3: Open plan Offices. Suíça, 2012.

ISO – INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 9921-1. Ergonomic assessment of speech communication -- Part 1: Speech interference level and communication distances for persons with normal hearing capacity in direct communication (SIL method). Suiça, 1996a.

ISO – INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. ISO 11690-1: Acoustics – Recommended practice for the design of low-noise workplaces containing machinery – Part 1: Noise control strategies. Suiça, 1996b.

JAHNCKE, H.; HONGISTO, V.; VIRJONEN, P. Cognitive performance during irrelevant speech: Effects of speech intelligibility and office-task characteristics. Applied Acoustics, v. 74, p. 307-316, 2013. DOI:https://doi.org/10.1016/j.apacoust.2012.08.007.

KAARLELA-TUOMAALA, A. et al. Effects of acoustic environment on work in private office rooms and open-plan offices – longitudinal study during relocation. Ergonomics, v. 52, p. 1423-1444, 2009. DOI:https://doi.org/10.1080/00140130903154579.

KERANEN, J.; HONGISTO, V. Prediction of the spatial decay of speech in open-plan offices. Applied Acoustics, v. 74, p. 1315-1325, 2013. DOI: https://doi.org/10.1016/j.apacoust.2013.05.011.

KIM, J.; DEAR, R. D. Workspace satisfaction: The privacy-communication trade-off in open-plan offices. Journal of Environmental Psychology, v. 36, p. 18-26, 2013. DOI: https://doi.org/10.1016/j.jenvp.2013.06.007.

KITAPCI, K. et al. Speech intelligibility in multilingual spaces. In: EUROPEAN CONGRESS AND EXPOSITION ON NOISE CONTROL ENGINEERING, 2013, Innsbruck. Proceedings [...]. Innsbruck: European Acoustics Association & Austrian Noise Abatement Association, 2013.

LEE, Y.S. Office layout affecting privacy, interaction, and acoustic quality in LEED-certified buildings. Building and Environment, v. 45, p. 1594-1600, 2010. DOI: https://doi.org/10.1016/j.buildenv.2010.01.007.

LIU, T. et al. Effects of noise type, noise intensity, and illumination intensity on reading performance. Applied Acoustics, v. 120, p. 70-74, 2017. DOI: https://doi.org/10.1016/j.apacoust.2017.01.019.

LONG, M. Architectural Acoustics. London: Elsevier, 2011.

MEHTA, M.; JOHNSON, J.; ROCAFORT, J. Architectural acoustics: principles and design. New Jersey, USA. Prentice Hall, 1999.

MÜLLER, S. Medir o STI. In: SEMINÁRIO DE MÚSICA, CIÊNCIA E TECNOLOGIA, 2., 2005, Campinas. Anais [...]. São Paulo: USP, 2005. Disponível em: http://www2.eca.usp.br/smct/ojs/index.php/smct/article/view/20/19.

NOWOŚWIAT, A.; OLECHOWSKA, M. Fast estimation of speech transmission index using the reverberation time. Applied Acoustics, v. 102, p. 55–61, 2016. DOI: https://doi.org/10.1016/j.apacoust.2015.09.001.

PASSERO, C. R. M.; ZANNIN, P. H. T. O conforto acústico em escritórios panorâmicos: estudo de caso em um escritório real. Ambiente Construído, v. 9, n. 1, p. 93-105, 2009.

PASSERO, C. R. M.; ZANNIN, P. H. T. Acoustic evaluation and adjustment of an open-plan office through architectural design and noise control. Applied Ergonomics, v. 43, p. 1066-1071, 2012a. DOI:https://doi.org/10.1016/j.apergo.2012.03.007.

PASSERO, C. R. M.; ZANNIN, P. H. T. Study of the acoustic suitability of an open plan office based on STI and DL2 simulations. Archives of Acoustics, v. 37, n. 2, p. 237-243, 2012b.

PIERRETTE, M. et al. Noise effect on comfort in open-space offices: development of an assessment questionnaire. Ergonomics, v. 58, p. 96-106, 2015. DOI: https://doi.org/10.1080/00140139.2014.961972.

REINTEN, P. et al. The indoor sound environment and human task performance: A literature review on the role of room acoustics. Building and Environment, v. 123, p. 315-332, 2017. DOI:https://doi.org/10.1016/j.buildenv.2017.07.005.

RINDEL, J. H. Prediction of acoustical parameters for open plan offices according to ISO 3382-3. The Journal of the Acoustical Society of America, v. 131, n. 4, 2012. DOI: https://doi.org/10.1121/1.4708587.

RINDEL, J. H.; CHRISTENSEN, C. L. Acoustical simulation of open-plan offices according to ISO 3382-3. In: EUROPEAN CONGRESS AND EXPOSITION ON NOISE CONTROL ENGINEERING, 2012, Prague. Proceedings [...]. Prage: European Acoustics Association & Czech Acoustical Association, 2012.

RYHERD, E. E.; WANG, L. M. Implications of human performance and perception under tonal noise conditions on indoor noise criteria. The Journal of the Acoustical Society of America, v. 124, n. 1, pp. 218-226, 2008. DOI:https://doi.org/10.1121/1.2932075.

SELAMAT, F. E.; ZULKIFLI, R. Acoustic comfort in industrial office: a preliminary study at a manufacturing company in malaysia. Malaysian Journal of Public Health Medicine, Special Volume (1), p. 7-14, 2016.

SOMMERHOFF, J.; ROSAS, C. Relación entre los porcentajes de inteligibilidad de pruebas de articulación y valores de STI In: CONGRESSO IBERO-AMERICANO DE ACÚSTICA, 8., 2012, Évora. Anais [...]. Évora: SOBRAC, 2012.

TOCCI, G. C. Room Noise Criteria – The State of the Art in the Year 2000. Noise News International, v. 8, n. 3, p. 106-119, 2000.

VAN DE POLL, M. K. et al. Disruption of writing by background speech: The role of speech transmission index. Applied Acoustics, v. 81, pp. 15-18, 2014. DOI: https://doi.org/10.1016/j.apacoust.2014.02.005.

VDI – ASSOCIAÇÃO DE ENGENHEIROS ALEMÃES. VDI 2569: Isolamento e design acústico em escritórios. Berlin, 1990.

VENETJOKI, N. et al. The effect of speech and speech intelligibility on task performance. Ergonomics, v. 49, pp. 2068-2091, 2006. DOI: https://doi.org/10.1080/00140130600679142.

VIRJONEN, P.; KERÄNEN, J.; HONGISTO, V. Determination of acoustical conditions in open-plan offices: proposal for new measurement method and target values. Acta Acustica united with Acustica, v. 95, p. 279-290, 2009. DOI:https://doi.org/10.3813/AAA.918150.

VISCHER, J. C. O Conceito de conforto ambiental no desempenho do ambiente de trabalho. Ambiente Construído, Porto Alegre, v. 7, n.1, p. 21-34, jan./mar. 2007.

WANG, L. M.; BOWDEN, E. E. Performance review of indoor noise criteria. Architectural Engineering -- Faculty Publications, 9, 2003.

ZHANG, M.; KANG, J; JIAO, F. A social survey on the noise impact in open-plan working environments in China. Science of the Total Environment, v. 438, p. 517-526, 2012. DOI: https://doi.org/10.1016/j.scitotenv.2012.08.082.

A PARC Pesquida em Arquitetura e Construção utiliza a licença do Creative Commons (CC), preservando assim, a integridade dos artigos em ambiente de acesso aberto.

Downloads

Não há dados estatísticos.