DOI QR코드

DOI QR Code

Conceptual Design of 6U Micro-Satellite System for Optical Images of 3 m GSD

3 m급 광학영상 촬영을 위한 6U 초소형위성 시스템 개념설계

  • Kim, Geuk-Nam (Astrodynamics and Control Laboratory, Department of Astronomy, Yonsei University) ;
  • Park, Sang-Young (Astrodynamics and Control Laboratory, Department of Astronomy, Yonsei University) ;
  • Kim, Gi-hwan (Department of Optics and Photonics, Yonsei University) ;
  • Park, Seung-Han (Department of Optics and Photonics, Yonsei University) ;
  • Song, Youngbum (Satellite Center, Hanwha Systems, Co., Ltd.) ;
  • Song, Sung Chan (Satellite Center, Hanwha Systems, Co., Ltd.)
  • 김극남 (우주비행제어 연구실, 천문우주학과, 연세대학교) ;
  • 박상영 (우주비행제어 연구실, 천문우주학과, 연세대학교) ;
  • 김기환 (광과학공학과, 연세대학교) ;
  • 박승한 (광과학공학과, 연세대학교) ;
  • 송영범 (위성센터, 한화시스템(주)) ;
  • 송성찬 (위성센터, 한화시스템(주))
  • Received : 2022.02.12
  • Accepted : 2022.04.29
  • Published : 2022.06.30

Abstract

The purpose of this study was to present a conceptual design of the 6U micro-satellite system for optical image of 3 m GSD. An optical camera system with a payload of 3 m GSD image was designed and optimized. The optical system has a diameter of Ø78 mm, length 250 mm, and 1400 mm focal length. The requirement and constraints were configured for the 6U micro-satellite bus system with the payload. Satisfying the requirement and constraints, the subsystems of the 6U bus were designed such as attitude and orbit control, propulsion, command and data handling, electrical power, communication, structures and mechanisms, and thermal control subsystem. The mass budget, power budget, and communication link budget were also confirmed for the 6U micro-satellite comprising the optical payload and the subsystems of bus. To take optical images, a mission operation concept is proposed for the 6U micro-satellite in a low-Earth orbit. A constellation comprising many 6U micro-satellites studied in this paper, can provide with various data for reconnaissance and disaster tracking.

본 연구는 저궤도에서 3 m급 광학 영상을 획득하기 위한 6U 초소형위성 시스템의 개념설계를 제안한다. 3 m급 광학 영상을 촬영하기 위한 광학계를 설계하고 최적화한다. 광학계는 구경 Ø78 mm, 길이 250 mm의 공간 내, 유효 초점거리 1400 mm를 가진다. 이를 탑재할 수 있는 6U 초소형위성의 시스템에 대한 요구조건과 제한조건을 도출한다. 이러한 조건들을 만족하는 자세 및 궤도제어계, 추진계, 명령 및 데이터처리계, 전력계, 통신계, 구조 및 메커니즘계, 열제어계를 설계한다. 설계된 광학 탑재체와 COTS 부품으로 구성된 본체의 서브시스템을 통합하여 6U 초소형위성의 시스템을 완성한다. 전체 시스템의 질량, 전력, 통신에 대한 버짓 분석을 통해 설계규격을 확인한다. 저궤도에서 광학 영상을 획득하기 위한 6U 초소형위성의 운용 개념을 제시한다. 이러한 초소형위성을 대량으로 생산하여 위성군을 구축한다면 감시·정찰 임무나 재난·재해 관리에 활용할 수 있다.

Keywords

Acknowledgement

본 연구는 한화시스템(주)의 "초소형 위성 시스템 및 군집위성군 연구" 지원으로 수행되었음.

References

  1. eoPortal Ditectory, STRaND-1, https://directory.eoportal.org/web/eoportal/satellite-missions/s/strand-1 (accessed 7 February 2022).
  2. J. Crusan and C. Galica, "NASA's CubeSat Launch Initiative: Enabling broad access to space," Acta Astronautica, vol. 157, pp. 51-60, 2019. https://doi.org/10.1016/j.actaastro.2018.08.048
  3. C.R. Boshuizen, J. Mason, P. Klupar, and S. Spanhake, "Results from the Planet Labs Flock Constellation," Proc. of the 28th Annual AIAA/USU Conference on Small Satellites, American Institute of Aeronautics and Astronautics (AIAA), Logan, UT, 2014.
  4. A. Simonetti, A. Franzoso, and Saggese, and F. Gerace, "Nanosatellite EAGLET-1 Ready for Launch", Proc. of the 4S Symposium, Sorrento, Italy, 2018.
  5. Gunter's Space Page, 1HOPSat 1, ⋯, 8, https://space.skyrocket.de/doc_sdat/1hopsat-td.htm (accessed 7 February 2022).
  6. S. Han, Y. Choi, D.-H. Cho, W.-S. Choi, H. C. Gong, H.-D. Kim, and G-H. Cho, "Analysis of Cubesat Development Status in Korea," J. of The Korean Society for Aeronautical and Space Sciences, vol. 45, no. 11, 45(11), pp. 975-988, 2017. https://doi.org/10.5139/JKSAS.2017.45.11.975
  7. D.-H. Cho, W.-S. Choi, M.-K. Kim, J.-H. Kim, E. Sim, and H.-D. Kim, "High-Resolution Image and Video CubeSat (HiREV): Development of Space Technology Test Platform Using a Low-Cost CubeSat Platform," International Journal of Aerospace Engineering, vol. 2019. https://doi.org/10.1155/2019/8916416
  8. Jensen, J. R., Remote Sensing of the Environment: An Earth Resource Perspective, 2end Ed., Pearson, New Jersey, 2007.
  9. W. J. Smith, Modern Lens Design, 2nd Ed., Mc Graw Hill, New York, 2004.
  10. eoPortal Ditectory, Planet, https://directory.eoportal.org/web/eoportal/satellite-missions/p/planet (accessed 7 February 2022).
  11. Simera Sense, xScape100, https://simerasense.com/products/xscape100-2/ (accessed 7 February 2022).
  12. Dragonfly Aerospace, Caiman Imager, https://dragonflyaerospace.com/caiman/ (accessed 7 February 2022).
  13. Satsearch, 90 mm Camera, https://satsearch.co/products/kairospace-90mm-camera (accessed 7 February 2022).
  14. Onsemi, KAI-11002: Interline Transfer CCD Image Sensor, 10.7 MP, https://www.onsemi.com/products/sensors/image-sensors/kai-11002, 2022 (accessed 7 February 2022).
  15. G. H. Kim, Study of Design Diameter 78mm Telescope for Cube Satellite, MS Thesis, Dept. of Optics & Photonics, Yonsei University, 2021.
  16. S. Garrett, NASA Systems Engineering Handbook Revision 2. NASA, 2017.
  17. V. Knap, L.K. Vestergaard, and D. Stoe, "A Review of Battery Technology in CubeSats and Small Satellite Solutions," Energies, vol. 13, no. 16, 2020. https://doi.org/10.3390/en13164097
  18. M. Casasco, G. Criado, S. Weikert, J. Eggert, M. Hirth, T. Ott, and H. Su, "Pointing Error Budgeting for High Pointing Accuracy Mission using the Pointing Error Engineering Tool," Proc. of the AIAA Guidance, Navigation, and Control Conference, Boston, 2013.
  19. S.Y.W. Low, and Y.X. Chia, "Assessment of Orbit Maintenance Strategies for Small Satellites," Proc. of the 32nd Annual AIAA/USU Conference on Small Satellites, American Institute of Aeronautics and Astronautics (AIAA), Logan, UT, 2018.
  20. S. Jin, Critical Design and Analysis of CubeSat for Aerosol Monitoring Mission, MS Thesis, Dept. of Astronomy, Yonsei University, 2021.