Skip to main content
Log in

Fluorescence-Quenching Phenomenon by Photoinduced Electron Transfer between a Fluorescent Dye and a Nucleotide Base

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Fluorescently labeled oligonucleotide probes have been widely used in biotechnology, and fluorescence quenching by the interaction between the dyes and a nucleobase has been pointed out. This quenching causes big problem in analytical methods, but is useful in some other cases. Therefore, it is necessary to estimate the fluorescence quenching intensity under various conditions. We focused on the redox properties of some commercially available fluorescent dyes, and investigated dye-nucleotide interactions between a free dye and a nucleotide in aqueous solution by electrochemical and spectroscopic techniques. Our results suggested that the quenching was accompanied by photoinduced electron transfer between a thermodynamically quenchable excited dye and a specific base. Several kinds of fluorescent dyes labeled to the 5’-end of oligonucleotide C10T6 were prepared, and their quenching ratios compared upon hybridization with the complementary oligonucleotide A6G10. The quenching was completely reversible and their efficiencies depended on the attached fluorophore types. The fluorescence of 5-FAM, BODIPY FL or TAMRA-modified probe was strongly quenched by hybridization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Cooper and P. J. Hagerman, Biochemistry, 1990, 29, 9261.

    Article  CAS  PubMed  Google Scholar 

  2. R. A. Hochstrasser, S.-M. Chen, and D. P. Millar, Biophys. Chem., 1992, 45, 133.

    Article  CAS  PubMed  Google Scholar 

  3. S. P. Lee, D. Porter, J. G. Chirikjian, J. R. Knutson, and M. K. Han, Anal. Biochem., 1994, 220, 377.

    Article  CAS  PubMed  Google Scholar 

  4. L. Edman, Ü. Mets, and R. Rigler, Proc. Natl, Acad. Sci. USA, 1996, 93, 6710.

    Article  CAS  Google Scholar 

  5. Y. Jia, A. Sytnik, L. Li, S. Vladimirov, B. S. Cooperman, and R. M. Hochstrasser, Proc. Natl, Acad. Sci. USA, 1997, 94, 7932.

    Article  CAS  Google Scholar 

  6. N. G. Walter and J. M. Burke, RNA, 1997, 3, 392.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. T. Horn, C.-A. Chang, and M. S. Urdea, Nucleic Acids Res., 1997, 25, 4842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. C. Eggeling, J. R. Fries, L. Brand, R. Gunther, and C. A. M. Seidel, Proc. Natl. Acad. Sci. USA, 1998, 95, 1556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. K. Fukui, K. Tanaka, M. Fujitsuka, A. Watanabe, and O. Ito, J. Photochem. Photobiol. B: Biol, 1999, 50, 18.

    Article  CAS  Google Scholar 

  10. A. Draganescu, S. C. Hodawadekar, K. R. Gee, and C. Brenner, J. Biol. Chem., 2000, 275, 4555.

    Article  CAS  PubMed  Google Scholar 

  11. A. Moter and U. B. Göbel, J. Microbiol. Methods, 2000, 41, 85.

    Article  CAS  PubMed  Google Scholar 

  12. C. A. M. Seidel, A. Schulz, and M. H. M. Sauer, J. Phys. Chem., 1996, 100, 5541.

    Article  CAS  Google Scholar 

  13. F. D. Lewis, X. Liu, J. Liu, S. E. Miller, R. T. Hayes, and M. R. Wasielewski, Nature, 2000, 406, 51.

    Article  CAS  PubMed  Google Scholar 

  14. F. D. Lewis, T. Wu, X. Liu, R. L. Letsinger, S. E. Miller, R. T. Hayes, and M. R. Wasielewski, J. Am. Chem. Soc, 2000, 122, 2889.

    Article  CAS  Google Scholar 

  15. E. Zahavy and M. A. Fox, J. Phys. Chem. B, 1999, 103, 9321.

    Article  CAS  Google Scholar 

  16. M. Sauer, K. H. Drexhage, U. Lieberwirth, R. Miiller, S. Nord, and C. Zander, Chem. Phys. Lett, 1998, 284, 153.

    Article  CAS  Google Scholar 

  17. M. Sauer, K.-T. Han, R. Miiller, S. Nord, A. Schulz, S. Seeger, J. Wolfrum, J. Arden-Jacob, G. Deltau, N. J. Marx, C. Zander, and K. H. Drexhage, J. Fluoresc, 1995, 5, 247.

    Article  CAS  PubMed  Google Scholar 

  18. S. Nord, M. Sauer, J. Arden-Jacob, K. H. Drexhage, U. Lieberwirth, S. Seeger, and J. Wolfrum, J. Fluoresc, 1997, 7, 79S.

    CAS  Google Scholar 

  19. J. Widengren, J. Dapprich, and R. Rigler, Chem. Phys., 1997, 216, 417.

    Article  CAS  Google Scholar 

  20. R. Jasuja, D. M. Jameson, C. K. Nishijo, and R. W. Larsen, J. Phys. Chem. B, 1997, 101, 1444.

    Article  CAS  Google Scholar 

  21. J.-P. Lecomte, A. K. Mesmaeker, J. M. Kelly, A. B. Tossi, and H. Gorner, Photochem. Photobiol, 1992, 55, 681.

    Article  CAS  PubMed  Google Scholar 

  22. C. Moucheron, A. K. Masmaeker, and J. M. Kelly, Photochem. Photobiol. B: Biol, 1997, 40, 91.

    Article  CAS  Google Scholar 

  23. D. A. Dunn, V. H. Lin, and I. E. Kochevar, Photochem. Photobiol, 1991, 53, 47.

    Article  CAS  PubMed  Google Scholar 

  24. S. J. Atherton and A. Harriman, J. Am. Chem. Soc, 1993, 115, 1816.

    Article  CAS  Google Scholar 

  25. N. E. Geacintov, R. Zhao, V. A. Kuzmin, S. K. Kim, and L. J. Pecora, Photochem. Photobiol, 1993, 58, 185.

    Article  CAS  PubMed  Google Scholar 

  26. D. O’Connor, V. Y. Shafirovich, and N. E. Geacintov, J. Phys. Chem., 1994, 98, 9831.

    Article  Google Scholar 

  27. V. Y. Shafirovich, P. P. Levin, V. A. Kuzmin, T. E. Thorgersson, D. S. Kliger, and N. E. Geacintov, J. Am. Chem. Soc, 1994, 116, 63.

    Article  CAS  Google Scholar 

  28. V. Y. Shafirovich, S. H. Courtney, N. Ya, and N. E. Geacintov, J. Am. Chem. Soc, 1995, 117, 4920.

    Article  CAS  Google Scholar 

  29. W. E. Jones and M. A. Fox, J. Phys. Chem., 1994, 98, 5095.

    Article  CAS  Google Scholar 

  30. A. Konno, Electrochemistry, 1999, 67, 866.

    Article  CAS  Google Scholar 

  31. D. Rehm and A. Weller, Isr. J. Chem., 1970, 8, 259.

    Article  CAS  Google Scholar 

  32. A. Z. Weller, Phys. Chem. Neu. Folg., 1982, 133, 93.

    Article  CAS  Google Scholar 

  33. J. R. Lakowicz, “Principles of fluorescence spectroscopy, 1989, Plenum Press, New York, 257.

    Google Scholar 

  34. S. Fery-Forgues and B. Delavaux-Nicot, J. Photochem. Photobiol. A: Chem., 2000, 132, 137.

    Article  CAS  Google Scholar 

  35. J.-P. Lecomte, A. K.-D. Mesmaeker, J. M. Kelly, A. B. Tossi, and H. Gorner, Photochem. Photobiol, 1992, 55, 681.

    Article  CAS  PubMed  Google Scholar 

  36. S. Kirschstein, S. Winter, D. Turner, and G. Löber, Bioelectrochem. Bioenerg., 1999, 48, 415.

    Article  CAS  PubMed  Google Scholar 

  37. D. G. Norman, R. J. Grainber, D. Uhrin, and D. M. J. Lilley, Biochemistry, 2000, 39, 6317.

    Article  CAS  PubMed  Google Scholar 

  38. J. J. P. Stewart, Int. J. Quant. Chem., 1996, 58, 133.

    Article  CAS  Google Scholar 

  39. R. A. Hochstrasser, S.-M. Chen, and D. P. Miller, Biophys. Chem., 1992, 45, 133.

    Article  CAS  PubMed  Google Scholar 

  40. S. M. Gasper and G. B. Schuster, J. Am. Chem. Soc, 1997, 119, 12762.

    Article  CAS  Google Scholar 

  41. I. Saito, M. Takayama, H. Sugiyama, and K. Nakatani, J. Am. Chem. Soc, 1995, 117, 6406.

    Article  CAS  Google Scholar 

  42. J. Geimer and D. Berkert, Chem. Phys. Lett., 1997, 276, 411.

    Article  CAS  Google Scholar 

  43. B. Armitage and G. B. Schuster, Photochem. Photobiol, 1997, 66, 164.

    Article  CAS  PubMed  Google Scholar 

  44. C. Lu, W. Lin, W. Wang, Z. Han, S. Yao, and N. Lin, Phys. Chem. Chem. Phys., 2000, 2, 329.

    Article  CAS  Google Scholar 

  45. F. D. Lewis, T. Wu, X. Liu, R. L. Letsinger S. R. Greenfield, S. E. Miller, and M. R. Wasielewski, J. Am. Chem. Soc, 2000, 122, 2889.

    Article  CAS  Google Scholar 

  46. C. E. Kerr, C. D. Mitchell, J. Headrick, B. E. Eaton, and T. L. Netzel, J. Phys. Chem. B, 2000, 104, 1637.

    Article  CAS  Google Scholar 

  47. C. E. Kerr, C. D. Mitchell, Y.-M. Ying, B. E. Eaton, and T. L. Netzel, J. Phys. Chem. B, 2000, 104, 2166.

    Article  CAS  Google Scholar 

  48. B. Önfelt, P. Lincoln, B. Nordén, J. S. Baskin, and A. H. Zewail, Proc. Natl. Acad. Sci. U.S.A., 2000, 97, 5708.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Torimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torimura, M., Kurata, S., Yamada, K. et al. Fluorescence-Quenching Phenomenon by Photoinduced Electron Transfer between a Fluorescent Dye and a Nucleotide Base. ANAL. SCI. 17, 155–160 (2001). https://doi.org/10.2116/analsci.17.155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.17.155

Navigation