Skip to main content
Log in

Studies on the Matched Potential Method for Determining the Selectivity Coefficients of Ion-Selective Electrodes Based on Neutral Ionophores: Experimental and Theoretical Verification

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A theory is presented that describes the matched potential method (MPM) for the determination of the potentiometric selectivity coefficients (KApo,Bt) of ion-selective electrodes for two ions with any charge. This MPM theory is based on electrical diffuse layers on both the membrane and the aqueous side of the interface, and is therefore independent of the Nicolsky–Eisenman equation. Instead, the Poisson equation is used and a Boltzmann distribution is assumed with respect to all charged species, including primary, interfering and background electrolyte ions located at the diffuse double layers. In this model, the MPM-selectivity coefficients of ions with equal charge (zA = zB) are expressed as the ratio of the concentrations of the primary and interfering ions in aqueous solutions at which the same amounts of the primary and interfering ions permselectively extracted into the membrane surface. For ions with unequal charge (zAzB), the selectivity coefficients are expressed as a function not only of the amounts of the primary and interfering ions permeated into the membrane surface, but also of the primary ion concentration in the initial reference solution and the EMF value. Using the measured complexation stability constants and single ion distribution coefficients for the relevant systems, the corresponding MPM selectivity coefficients can be calculated from the developed MPM theory. It was found that this MPM theory is capable of accurately and precisely predicting the MPM selectivity coefficients for a series of ion-selective electrodes (ISEs) with representative ionophore systems, which are generally in complete agreement with independently determined MPM selectivity values from the potentiometric measurements. These results also conclude that the assumption for the Boltzmann distribution was in fact valid in the theory. The recent critical papers on MPM have pointed out that because the MPM selectivity coefficients are highly concentration dependent, the determined selectivity should be used not as “coefficient”, but as “factor”. Contrary to such a criticism, it was shown theoretically and experimentally that the values of the MPM selectivity coefficient for ions with equal charge (zA = zB) never vary with the primary and interfering ion concentrations in the sample solutions even when non-Nernstian responses are observed. This paper is the first comprehensive demonstration of an electrostatics-based theory for the MPM and should be of great value theoretically and experimentally for the audience of the fundamental and applied ISE researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Umezawa and Y. Umezawa (ed.), “CRC Handbook of Ion-Selective Electrodes: Selectivity Coefficients”, 1990, CRC Press, Boca Raton.

    Google Scholar 

  2. G. G. Guilbault, R. A. Durst, M. S. Frant, H. Freiser, E. H. Hansen, T. S. Light, E. Pungor, G. Rechniz, M. N. Rice, T. J. Rohm, W. Simon, and D. R. Thomas, Pure Appl. Chem., 1976, 48, 127.

    Article  Google Scholar 

  3. G. G. Guilbault, IUPAC Information Bull., 1978, 1, 69.

    Google Scholar 

  4. Y. Umezawa, K. Umezawa, and H. Sato, Pure Appl. Chem., 1995, 67, 507.

    Article  Google Scholar 

  5. T. Sakalski, A. Ceresa, T. Zwickl, and E. Pretsch, J. Am. Chem. Soc, 1997, 119, 11347.

    Article  Google Scholar 

  6. T. Sakalski, A. Ceresa, M. Fibbioli, T. Zwickl, E. Bakker, and E. Pretsch, Anal. Chem., 1999, 71, 1210.

    Article  Google Scholar 

  7. V. P. Y. Gadzekpo and G. D. Christian, Anal. Chim. Acta, 1984, 164, 279.

    Article  CAS  Google Scholar 

  8. P. Kane and D. Diamond, Talanta, 1997, 44, 1847.

    Article  CAS  Google Scholar 

  9. W. Zhang, A. Fakler, C. Demuth, and U. E. Spichiger, Anal. Chim. Acta, 1998, 375, 211.

    Article  CAS  Google Scholar 

  10. C. Macca, Anal. Chim. Acta, 1996, 321, 1.

    Article  CAS  Google Scholar 

  11. E. Bakker, Tr. Anal. Chem., 1997, 16, 252.

    Article  CAS  Google Scholar 

  12. G. Horvai, Tr. Anal. Chem., 1997, 16, 260.

    Article  CAS  Google Scholar 

  13. G Horvai, Sens. Actuators B, 1997, 43, 94.

    Article  CAS  Google Scholar 

  14. E. Bakker, R. K. Meruva, E. Pretsch, and M. E. Meyerhoff, Anal. Chem., 1994, 66, 3021.

    Article  CAS  Google Scholar 

  15. M. Nägele, E. Bakker, and E. Pretsch, Anal. Chem., 1999, 71, 1041.

    Article  Google Scholar 

  16. K. Tohda, S. Yoshiyagawa, M. Kataoka, K. Odashima, and Y. Umezawa, Anal. Chem., 1997, 69, 3360.

    Article  CAS  Google Scholar 

  17. K. Tohda, Y. Umezawa, S. Yoshiyagawa, S. Hashimoto, and M. Kawasaki, Anal. Chem., 1995, 67, 570.

    Article  CAS  Google Scholar 

  18. S. Yajima, K. Tohda, P. Biihlmann, and Y. Umezawa, Anal. Chem., 1997, 69, 1919.

    Article  CAS  Google Scholar 

  19. E. Bakker, M. Nägele, U. Schaller, and E. Pretsch, Electroanalysis, 1995, 7, 817.

    Article  CAS  Google Scholar 

  20. E. Bakker, P. Biihlmann, and E. Pretsch, Chem. Rev., 1997, 97, 3083.

    Article  CAS  Google Scholar 

  21. E. Bakker, M. Lerchi, T. Rosatzin, B. Rusterholtz, and W. Simon, Anal. Chim. Acta, 1993, 278, 211.

    Article  CAS  Google Scholar 

  22. K. Seiler and W. Simon, Anal. Chim. Acta, 1992, 266, 73.

    Article  CAS  Google Scholar 

  23. E. Bakker, M. Willer, M. Lerchi, K. Seiler, and E. Pretsch, Anal. Chem., 1994, 66, 516.

    Article  CAS  Google Scholar 

  24. H. Hisamoto, H. Tohma, T. Yamada, K. Yamauchi, D. Siswanta, N. Yoshioka, and K. Suzuki, Anal. Chim. Acta, 1998, 373, 271.

    Article  CAS  Google Scholar 

  25. C. Gavach, P. Seta, and B. D’Epenoux, J. Electroanal Chem., 1977, 83, 225.

    Article  CAS  Google Scholar 

  26. J. D. Reid, O. R. Melroy, and R. P. Buck, J. Electroanal. Chem., 1983, 147, 71.

    Article  CAS  Google Scholar 

  27. M. Groth, S. Gromb, and C. Gavach, J. Electroanal. Chem., 1978, 147, 71.

    Google Scholar 

  28. D. Erne, N. Stojanac, D. Ammann, P. Hofstetter, E. Pretsch, and W. Simon, Helv. Chim. Acta, 1980, 63, 2271.

    Article  CAS  Google Scholar 

  29. F. Lanter, D. Erne, D. Ammann, and W. Simon, Anal. Chem., 1980, 52, 2400.

    Article  CAS  Google Scholar 

  30. P. Biihlmann, E. Pretsch, and E. Bakker, Chem. Rev., 1998, 98, 1593.

    Article  Google Scholar 

  31. A. Ceresa and E. Pretch, Anal. Chim. Acta, 1999, 395, 41.

    Article  CAS  Google Scholar 

  32. E. Bakker, E. Pretch, and P. Biihlmann, Anal. Chem., 2000, 72, 1127.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Umezawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tohda, K., Dragoe, D., Shibata, M. et al. Studies on the Matched Potential Method for Determining the Selectivity Coefficients of Ion-Selective Electrodes Based on Neutral Ionophores: Experimental and Theoretical Verification. ANAL. SCI. 17, 733–743 (2001). https://doi.org/10.2116/analsci.17.733

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.17.733

Navigation