Skip to main content
Log in

A Microfluidic Platform Based on Robust Gas and Liquid Exchange for Long-term Culturing of Explanted Tissues

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Microfluidic devices are important platforms to culture and observe biological tissues. Compared with conventional setups, microfluidic devices have advantages in perfusion, including an enhanced delivery of nutrients and gases to tissues. However, explanted tissues can maintain their functions for only hours to days in microfluidic devices, although their observations are desired for weeks. The suprachiasmatic nucleus (SCN) is a brain region composed of heterogeneous cells to control the biological clock system through synchronizing individual cells in this region. The synchronized and complicated cell–cell interactions of SCN cells are difficult to reproduce from seeded cells. Thus, the viability of explanted SCN contributes to the study of SCN functions. In this paper, we propose a new perfusion platform combining a PDMS microfluidic device with a porous membrane to culture an explanted SCN for 25 days. We expect that this platform will provide a universal interface for microfluidic manipulation of tissue explants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Huang, J. C. Williams, and S. M. Johnson, Lab Chip, 2012, 12, 2103.

    Article  CAS  PubMed  Google Scholar 

  2. J. Kieninger, A. Weltin, H. Flamm, and G. A. Urban, Lab Chip, 2018, 18, 1274.

    Article  CAS  PubMed  Google Scholar 

  3. I. C. McLean, L. A. Schwerdtfeger, S. A. Tobet, and C. S. Henry, Lab Chip, 2018, 18, 1399.

    Article  CAS  PubMed  Google Scholar 

  4. K. Sato and K. Sato, Anal. Sci., 2018, 34, 755.

    Article  CAS  PubMed  Google Scholar 

  5. E. D. Herzog, T. Hermanstyne, N. J. Smyllie, and M. H. Hastings, Cold Spring Harb. Perspect. Biol., 2017, 9, a027706.

    Article  PubMed  PubMed Central  Google Scholar 

  6. A. J. Harmar, H. M. Marston, S. Shen, C. Spratt, K. M. West, W. J. Sheward, C. F. Morrison, J. R. Dorin, H. D. Piggins, J.-C. Reubi, J. S. Kelly, E. S. Maywood, and M. H. Hastings, Cell, 2002, 109, 497.

    Article  CAS  PubMed  Google Scholar 

  7. Y. Yamaguchi, T. Suzuki, Y. Mizoro, H. Kori, K. Okada, Y. Chen, J.-M. Fustin, F. Yamazaki, N. Mizuguchi, J. Zhang, X. Dong, G. Tsujimoto, Y. Okuno, M. Doi, and H. Okamura, Science, 2013, 342, 85.

    Article  CAS  PubMed  Google Scholar 

  8. S.-H. Yoo, S. Yamazaki, P. L. Lowrey, K. Shimomura, C. H. Ko, E. D. Buhr, S. M. Siepka, H.-K. Hong, W. J. Oh, O. J. Yoo, M. Menaker, and J. S. Takahashi, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 5339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. Zambon, A. Zoso, O. Gagliano, E. Magrofuoco, G. P. Fadini, A. Avogaro, M. Foletto, S. Quake, and N. Elvassore, Anal. Chem., 2015, 87, 6535.

    Article  CAS  PubMed  Google Scholar 

  10. A. Queval, N. R. Ghattamaneni, C. M. Perrault, R. Gill, M. Mirzaei, R. A. McKinney, and D. Juncker, Lab Chip, 2010, 10, 326.

    Article  CAS  PubMed  Google Scholar 

  11. K. Rambani, J. Vukasinovic, A. Glezer, and S. M. Potter, J. Neurosci. Methods, 2009, 180, 243.

    Article  PubMed  PubMed Central  Google Scholar 

  12. H. H. Caicedo, M. Hernandez, C. P. Fall, and D. T. Eddington, Biomed. Microdevices, 2010, 12, 761.

    Article  PubMed  PubMed Central  Google Scholar 

  13. S. Funano, N. Tanaka, and Y. Tanaka, Anal. Sci., 2017, 33, 723.

    Article  CAS  PubMed  Google Scholar 

  14. K. Sato, M. Sato, M. Yokoyama, M. Hirai, and A. Furuta, Anal. Sci., 2019, 35, 49.

    Article  CAS  PubMed  Google Scholar 

  15. P. A. Passeraub, A. C. Almeida, and N. V. Thakor, Biomed. Microdevices, 2003, 5, 147.

    Article  CAS  Google Scholar 

  16. Y. Choi, M. A. McClain, M. C. LaPlaca, A. B. Frazier, and M. G. Allen, Biomed. Microdevices, 2007, 9, 7.

    Article  PubMed  Google Scholar 

  17. D. K. Cullen, J. Vukasinovic, A. Glezer, and M. C. LaPlaca, J. Neural Eng., 2007, 4, 159.

    Article  PubMed  Google Scholar 

  18. M. Simian and M. J. Bissell, J. Cell Biol., 2017, 216, 31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. K. Sato, M. Nakajima, S. Tokuda, and A. Ogawa, Anal. Sci., 2016, 32, 1217.

    Article  CAS  PubMed  Google Scholar 

  20. Y. Sakuta, I. Takehara, K. Tsunoda, and K. Sato, Anal. Sci., 2018, 34, 1073.

    Article  CAS  PubMed  Google Scholar 

  21. L. A. Schwerdtfeger, E. P. Ryan, and S. A. Tobet, Am. J. Physiol.:Gastrointest. Liver Physiol., 2016, 310, G240.

    PubMed  Google Scholar 

  22. S. Xiao, J. R. Coppeta, H. B. Rogers, B. C. Isenberg, J. Zhu, S. A. Olalekan, K. E. McKinnon, D. Dokic, A. S. Rashedi, D. J. Haisenleder, S. S. Malpani, C. A. ArnoldMurray, K. Chen, M. Jiang, L. Bai, C. T. Nguyen, J. Zhang, M. M. Laronda, T. J. Hope, K. P. Maniar, M. E. Pavone, M. J. Avram, E. C. Sefton, S. Getsios, J. E. Burdette, J. J. Kim, J. T. Borenstein, and T. K. Woodruff, Nat. Commun., 2017, 8, 14584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. S. N. Bhatia and D. E. Ingber, Nat. Biotechnol., 2014, 32, 760.

    Article  CAS  PubMed  Google Scholar 

  24. A. C. Liu, D. K. Welsh, C. H. Ko, H. G. Tran, E. E. Zhang, A. A. Priest, E. D. Buhr, O. Singer, K. Meeker, I. M. Verma, F. J. Doyle, J. S. Takahashi, and S. A. Kay, Cell, 2007, 129, 605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (S) (25221004), JSPS, MEXT, Japan (to H. R. U.), by a Grant-in-Aid for Scientific Research on Innovative Areas “Spying minority in biological phenomena (No.3306)” (23115006) of MEXT, Japan (to H. R. U.), by Research Program of Innovative Cell Biology by Innovative Technology of MEXT, Japan (to H. R. U.), by a Grant-in-Aid for JSPS Fellows (25-1565), JSPS, MEXT, Japan (to G. N. K.), by a Grant-in-Aid for Scientific Research, TEPCO Memorial Foundation, Japan (to Y. T.), by a Grant-in-Aid for Scientific Research on Innovative Areas (19H05338), JSPS, MEXT, Japan (to Y. T.), by the RIKEN Junior Research Associate program for graduate students (to G. N. K.), by an intramural Grant-in-Aid from the RIKEN Quantitative Biology Center (to H. R. U.), by an intramural Grant-in-Aid from the RIKEN Center for Developmental Biology (to H. R. U.), and by RIKEN Strategic Programs for R & D (to H. R. U.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yo Tanaka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ota, N., Kanda, G.N., Moriguchi, H. et al. A Microfluidic Platform Based on Robust Gas and Liquid Exchange for Long-term Culturing of Explanted Tissues. ANAL. SCI. 35, 1141–1147 (2019). https://doi.org/10.2116/analsci.19P099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P099

Keywords

Navigation