Skip to main content
Log in

Precise Zn Isotopic Ratio Measurements of Human Red Blood Cell and Hair Samples by Multiple Collector-ICP-Mass Spectrometry

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Precise 66Zn/64Zn and 68Zn/64Zn isotopic ratios of biochemical samples have been measured using multiple collector-ICP-mass spectrometry (MC-ICPMS). In order to eliminate the mass spectrometric interferences on Zn isotopes (e.g., 64Ni+ and 136Ba2+), we chemically purified the analyte using an ion chromatographic technique. The resulting precisions of the 66Zn/64Zn and 68Zn/64Zn ratio measurements were 0.05‰ and 0.10‰ (2SD), respectively, which were enough to detect the isotopic variation of Zn in nature. Red blood cell (RBC) samples were collected from five volunteers (four males and one female), including a series of 12 RBC samples from one person through monthly-based sampling over a year. These were analyzed to test possible seasonal changes and variations in 66Zn/64Zn and 68Zn/64Zn ratios among the individuals. The 66Zn/64Zn and 68Zn/64Zn ratios for a series of 12 RBC samples collected over a year were 0.43‰ and 0.83‰ higher than the values of highly purified Zn metal (JMC Zn), and no seasonal change could be found. The 66Zn/64Zn and 68Zn/64Zn ratios for RBC samples collected from five volunteers did not vary significantly. In order to investigate Zn isotopic heterogeneity in a human body, Zn isotopic ratios of a hair sample collected from one of the volunteers was also analyzed. The 66Zn/64Zn and 68Zn/64Zn ratios for the hair sample were 0.59‰ and 1.14‰ lower than the mean value of RBC samples. This result demonstrates that detectable isotopic fractionation occurs in the human body. The data obtained here suggest that the isotopic ratios of trace metals could provide new information about transportation of metal elements in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. L. Maréchal, P. Télouk, and F. Albarède, Chem. Geol., 1999, 158, 251.

    Article  Google Scholar 

  2. B. L. Beard, C. M. Johnson, L. Cox, H. Sun, K. H. Nealson, and C. Aguilar, Science, 1999, 285, 1889.

    Article  CAS  Google Scholar 

  3. X. K. Zhu, R. K. O’Nions, Y. Guo, and B. C. Reynolds, Science, 2000, 287, 2000.

    Article  CAS  Google Scholar 

  4. T. D. Bullen, A. F. White, C. W. Childs, D. V. Vivit, and M. S. Schulz, Geology, 2001, 29, 699.

    Article  CAS  Google Scholar 

  5. J. Baring, G. L. Arnold, and A. D. Anbar, Earth Planet Sci. Lett., 2001, 193, 447.

    Article  Google Scholar 

  6. T. Walczyk and F. von Blanckenburg, Science, 2002, 295, 2065.

    Article  CAS  Google Scholar 

  7. X. K. Zhu, Y. Guo, R. J. P. Williams, R. K. O’Nions, A. Matthews, N. S. Belshaw, G. W. Canters, E. C. de Waal, U. Weser, B. K. Burgess, and B. Salvato, Earth Planet. Sci. Lett., 2002, 200, 47.

    Article  CAS  Google Scholar 

  8. A. Stenberg, D. Malinovsky, I. Rodushkin, H. Andrén, C. Pontér, B. Öhlander, and D. C. Baxter, J. Anal. At. Spectrom., 2003, 18, 23.

    Article  CAS  Google Scholar 

  9. B. L. Beard, C. M. Johnson, J. L. Skulan, K. H. Nealson, L. Cox, and H. Sun, Chem. Geol., 2003, 195, 87.

    Article  CAS  Google Scholar 

  10. T. Ohno, A. Shinohara, I. Kohge, M. Chiba, and T. Hirata, Anal. Sci., 2004, 20, 617.

    Article  CAS  Google Scholar 

  11. A. D. Anbar, Earth Planet. Sci. Lett., 2004, 217, 223.

    Article  CAS  Google Scholar 

  12. A. Stenberg, H. Andrén, D. Malinovsky, E. Engström, I. Rodushkin, and D. C. Baxter, Anal. Chem., 2004, 76, 3971.

    Article  CAS  Google Scholar 

  13. A. S. Parasad, Am. J. Clin. Nutr., 1991, 53, 403.

    Article  Google Scholar 

  14. M. E. Wastney, R. L. Aamodt, W. F. Rumble, and R. I. Henkin, Am. J. Physiol., 1986, 251, R398.

  15. S. J. Fairweather-Tait, M. J. Jackson, T. E. Fox, S. G Wharf, J. Eagles, and P. C. Croghan, Br. J. Nutr., 1993, 70, 221.

    Article  CAS  Google Scholar 

  16. L. M. W. Owen, H. M. Crews, R. C. Hutton, and A. Walsh, Analyst, 1992, 117, 649.

    Article  CAS  Google Scholar 

  17. S. F. Durrant, A. Krushevska, D. Amarasiriwardena, M. D. Argentine, S. Romon-Guesnier, and R. M. Barnes, J. Anal. Atom. Spectrom., 1994, 9, 199.

    Article  CAS  Google Scholar 

  18. F. A. Mellon and B. Sandstrom (ed.), “Stable Isotope in Human Nutrition”, 1996, Academic Press, London.

    Google Scholar 

  19. I. J. Griffin, J. Anal. At. Spectrom., 2002, 17, 1186.

    Article  CAS  Google Scholar 

  20. A. Shinohara, M. Chiba, and Y. Inaba, Anal. Sci., 1998, 14, 713.

    Article  CAS  Google Scholar 

  21. T. Hirata, Analyst, 1996, 121, 1407.

    Article  CAS  Google Scholar 

  22. T. N. Van der Walt, F. W. E. Strelow, and R. Verheij, Solvent Extr. Ion Exch., 1985, 3, 723.

    Article  Google Scholar 

  23. W. R. Shields, T. J. Murphy, and E. L. Garner, J. Res. NBS, 1964, 68A, 589.

    Article  CAS  Google Scholar 

  24. H. Haraguchi, J. Anal. Atom. Spectrom., 2004, 19, 5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Ohno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohno, T., Shinohara, A., Chiba, M. et al. Precise Zn Isotopic Ratio Measurements of Human Red Blood Cell and Hair Samples by Multiple Collector-ICP-Mass Spectrometry. ANAL. SCI. 21, 425–428 (2005). https://doi.org/10.2116/analsci.21.425

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21.425

Navigation