Skip to main content
Log in

Electrochemical Determination of Sulfide at Various Carbon Substrates: A Comparative Study

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The direct electrochemical oxidation of sodium sulfide has been examined at five different carbon-based electrode substrates (glassy carbon (GC), boron-doped diamond (BDD), edge-plane pyrollytic graphite (EPPG), basal-plane pyrollytic graphite (BPPG) and carbon nanotubes (CNT)). An electrocatalytic response is observed at both the EPPG and CNT electrode compared to that of the other three substrates. The higher capacitative charging currents obtained at the CNT electrode hinder its detection range and, as such, the EPPG electrode has been clearly shown to be the substrate of choice for the direct electrochemical detection of sulfide. The procedure was applied to the recovery of a sulfide spike in river water, with a recovery of 104%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Patnaik, “A Comprehensive Guide to the Hazardous Properties of Chemical Substances”, 2nd ed., 1999, Wiley, New York

    Google Scholar 

  2. B. Meyer, “Sulfur, Energy and the Environment”, 1977, Elsevier.

    Google Scholar 

  3. N. S. Lawrence, J. Davis, and R. G. Compton, Talanta, 2000, 52, 771.

    Article  CAS  Google Scholar 

  4. M. Garcia-Calzada, G. Marban, and A. B. Fuertes, Anal. Chim. Acta, 1999, 380, 39.

    Article  CAS  Google Scholar 

  5. N. Bukun, Y. Dobrovolsky, A. Levchenko, L. Leonora, and E. Osadchii, J. Solid State Electrochem., 2003, 7, 122.

    Article  CAS  Google Scholar 

  6. S. S. M. Hassan, S. A. M. Marzouk, and H. E. M. Sayour, Anal. Chim. Acta, 2002, 466, 47.

    Article  CAS  Google Scholar 

  7. P. Jeroschewski, K. Haase, A. Trommer, and P. Grundler, Fresenius J. Anal. Chem., 1993, 346, 930.

    Article  CAS  Google Scholar 

  8. P. Jeroschewski, K. Haase, A. Trommer, and P. Grundler, Electroanalysis, 1994, 6, 769.

    Article  CAS  Google Scholar 

  9. J.-M. Zen, J.-L. Chang, P.-Y. Chen, R. Ohara, and K.-C. Pan, Electroanalysis, 2005, 17, 739.

    Article  CAS  Google Scholar 

  10. P. Jeroschewski, C. Steuckart, and M. Kuhl, Anal. Chem., 1998, 68, 4351.

    Article  Google Scholar 

  11. J. Cheng, P. Jandik, and N. Avdalovic, Anal. Chim. Acta, 2005, 536, 267.

    Article  CAS  Google Scholar 

  12. C. Giuriati, S. Cavalli, A. Gorni, D. Badocco, and P. Pastore, J. Chromatogr., A, 2004, 1023, 105.

    Article  CAS  Google Scholar 

  13. N. S. Lawrence, J. Davis, L. Jiang, T. G. J. Jones, S. N. Davies, and R. G. Compton, Electroanalysis, 2000, 12, 1453.

    Article  CAS  Google Scholar 

  14. N. S. Lawrence, R. P. Deo, and J. Wang, Anal. Chim. Acta, 2004, 517, 131.

    Article  CAS  Google Scholar 

  15. C. E. Banks and R. G. Compton, Anal. Sci., 2005, 21, 1263.

    Article  CAS  Google Scholar 

  16. C. E. Banks and R. G. Compton, Analyst, 2006, 131, 15.

    Article  CAS  Google Scholar 

  17. C. E. Banks, T. J. Davies, G. G. Wildgoose, and R. G. Compton, Chem. Commun., 2005, 829.

    Google Scholar 

  18. C. E. Banks, R. R. Moore, T. J. Davies, and R. G. Compton, Chem. Commun., 2004, 1804.

    Google Scholar 

  19. T. J. Davies, R. R. Moore, C. E. Banks, and R. G. Compton, J. Electroanal. Chem., 2004, 574, 123.

    Article  CAS  Google Scholar 

  20. R. R. Moore, C. E. Banks, and R. G. Compton, Analyst, 2004, 129, 755.

    Article  CAS  Google Scholar 

  21. F. Wantz, C. E. Banks, and R. G. Compton, Electroanalysis, 2005, 17, 1529.

    Article  CAS  Google Scholar 

  22. E. R. Lowe, C. E. Banks, and R. G. Compton, Electroanalysis, 2005, 17, 1627.

    Article  CAS  Google Scholar 

  23. C. E. Banks and R. G. Compton, Analyst, 2005, 130, 1232.

    Article  CAS  Google Scholar 

  24. E. R. Lowe, C. E. Banks, and R. G. Compton, Anal. Bioanal. Chem., 2005, 382, 1169.

    Article  CAS  Google Scholar 

  25. F. Wantz, C. E. Banks, and R. G. Compton, Electroanalysis, 2005, 17, 655.

    Article  CAS  Google Scholar 

  26. T.-W. Hui, K.-Y. Wong, and K.-K. Shiu, Electroanalysis, 1996, 8, 597.

    Article  CAS  Google Scholar 

  27. N. S. Lawrence, R. P. Deo, and J. Wang, Electroanalysis, 2005, 17, 65.

    Article  CAS  Google Scholar 

  28. M. Musameh, N. S. Lawrence, and J. Wang, Electrochem. Commun., 2005, 7, 14.

    Article  CAS  Google Scholar 

  29. N. S. Lawrence, M. Thompson, C. Prado, L. Jiang, T. G. J. Jones, and R. G. Compton, Electroanalysis, 2002, 14, 499.

    Article  CAS  Google Scholar 

  30. N. N. Greenwood and A. Earnshaw, “Chemistry of the Elements”, 1986, Pergamon Press, Oxford, 807.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan S. Lawrence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawrence, J., Robinson, K.L. & Lawrence, N.S. Electrochemical Determination of Sulfide at Various Carbon Substrates: A Comparative Study. ANAL. SCI. 23, 673–676 (2007). https://doi.org/10.2116/analsci.23.673

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.23.673

Navigation