Skip to main content
Log in

Influence of Speciation on the Response from Selenium to UV-Photochemical Vapor Generation

  • Notes
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

By exposure to appropriate UV intensities, rapid and quantitative oxidation/reduction of inorganic selenite, selenate and several organoselenium compounds representative of those of biochemical/metabolic interest, including selenomethionine, selenobetaine, l-selenocystine, selenomethylselenocysteine, γ-glutamyl-seleno-methylselenocysteine and selenocystamine, is achieved. In the presence of acetic acid, quantitative conversion to volatile SeH2 and SeCO occurs using a flow-through system comprising a highly efficient 40 W UV lamp for oxidation in tandem with a lower power 8 W UV photocatalytic reactor utilizing a thin-film coating of titania. The volatile reduced species are detected by atomic absorption spectrometry using a heated quartz tube atomizer. Direct photochemical conversion of selenite, selenomethionine, l-selenocystine, γ-glutamyl-Se-methylselenocysteine and selenocystamine occurs in the presence of 5% acetic acid, following exposure to an 8 W UV field, to yield volatile detectable species, whereas selenobetaine and selenate are unresponsive unless the latter is first subjected to oxidation by exposure to a highly efficient 40 W UV lamp and the selenate reduced in the presence of titania.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. Combs Jr., Br. J. Nutr., 2004, 92, 557.

    Article  Google Scholar 

  2. L. C. Clark, G. F. Combs, B. W. Turnbull, E. H. Slate, D. K. Chalker, J. Chow, L. S. Davis, R. A. Glover, G. F. Graham, E. G. Gross, A. Krongrad, J. L. Lesher, H. K. Park, B. B. Sanders, C. L. Smith, and J. R. Taylor, J. Am. Med. Assoc., 1996, 276, 1957.

    Article  CAS  Google Scholar 

  3. M. Brinkman, F. Buntinx, E. Muls, and M. P. Zeegers, Lancet Oncol., 2006, 7, 766.

    Article  CAS  Google Scholar 

  4. J. H. Koeman, W. H. M. Peeters, C. H. M. Koudstaal-Hol, P. S. Tjioe, and J. J. M. De Goeij, Nature, 1973, 245, 385.

    Article  CAS  Google Scholar 

  5. S. Ketavarapu, V. Yathavakilla, and J. A. Caruso, Anal. Bioanal. Chem., 2007, 389, 715.

    Article  Google Scholar 

  6. B. Gammelgaard, C. Gabel-Jensen, S. Stürup, and H. R. Hansen, Anal. Bioanal. Chem., 2008, 390, 1691.

    Article  CAS  Google Scholar 

  7. B. Gammelgaard, K. G. Madsen, J. Bjerrum, L. Bendahl, O. Jøns, J. Olsen, and U. Sidenius, J. Anal. At. Spectrom., 2003, 18, 65.

    Article  CAS  Google Scholar 

  8. Y. Ogra, K. Ishiwata, H. Takayama, N. Aimi, and K. T. Suzuki, J. Chromatogr., B, 2002, 767, 301.

    Article  CAS  Google Scholar 

  9. C. Gabel-Jensen, K. Lunøe, K. G. Madsen, J. Bendix, C. C. Ornett, S. Stürup, H. R. Hansen, and B. Gammelgaard, J. Anal. At. Spectrom., 2008, 23, 727.

    Article  CAS  Google Scholar 

  10. Y. Ogra, Anal. Bioanal. Chem., 2008, 390, 1685.

    Article  CAS  Google Scholar 

  11. B. Gammelgaard, M. I. Jackson, and C. Gabel-Jensen, Anal. Bioanal. Chem., 2011, 399, 1743.

    Article  CAS  Google Scholar 

  12. H. Goenaga Infante, S. P. Joel, E. Warburton, C. Hopley, R. Hearn, and S. Juliger, J. Anal. At. Spectrom., 2007, 22, 888.

    Article  Google Scholar 

  13. M. Dernovics, J. Farr, and R. Lobinski, Metallomics, 2009, 1, 317.

    Article  CAS  Google Scholar 

  14. H. Goenaga Infante, M. del Carmen Ovejero Bendito, C. Cámara, L. Evans, R. Hearn, and S. Moesgaard, Anal. Bioanal. Chem., 2008, 390, 2099.

    Article  Google Scholar 

  15. R. E. Sturgeon and Z. Mester, Appl. Spectrosc., 2002, 56, 202A.

    Article  CAS  Google Scholar 

  16. X.-M. Guo, R. E. Sturgeon, Z. Mester, and G. J. Gardner, Anal. Chem., 2004, 76, 2401.

    Article  CAS  Google Scholar 

  17. R. E. Sturgeon, X.-M. Guo, and Z. Mester, Anal. Bioanal Chem., 2005, 382, 881.

    Article  CAS  Google Scholar 

  18. N. Elwaer and H. Hintelmann, Anal. Bioanal. Chem., 2007, 389, 1889.

    Article  CAS  Google Scholar 

  19. Y. He, X. Hou, C. Zheng, and R. E. Sturgeon, Anal. Bioanal. Chem., 2007, 388, 769.

    Article  CAS  Google Scholar 

  20. X.-M. Guo, R. E. Sturgeon, Z. Mester, and G. Gardner, Appl. Organomet. Chem., 2003, 17, 575.

    Article  CAS  Google Scholar 

  21. X.-M. Guo, R. E. Sturgeon, Z. Mester, and G. J. Gardner, Anal. Chem., 2003, 75, 2092.

    Article  CAS  Google Scholar 

  22. X.-M. Guo, R. E. Sturgeon, Z. Mester, and G. J. Gardner, Environ. Sci. Technol., 2003, 37, 5645.

    Article  CAS  Google Scholar 

  23. E. Kikuchi and H. Sakamoto, J. Electrochem. Soc., 2000, 147, 4589.

    Article  CAS  Google Scholar 

  24. Y. C. Sun, Y. C. Chang, and C. K. Su, Anal. Chem., 2006, 78, 2640.

    Article  CAS  Google Scholar 

  25. S. Simon, A. Barats, F. Pannier, and M. Potin-Gautier, Anal. Bioanal. Chem., 2005, 383, 562.

    Article  CAS  Google Scholar 

  26. T.-W. Chen, M.-D. Zhou, J. Tong, and N. Belzile, Anal. Chim. Acta, 2005, 545, 142.

    Article  CAS  Google Scholar 

  27. T.-W. Chen, X.-L. Zhou, J. Tong, Y. Truong, and N. Belzile, Anal. Chim. Acta, 2005, 545, 149.

    Article  CAS  Google Scholar 

  28. T. Nakazato and H. Tao, Anal. Chem., 2006, 78, 1665.

    Article  CAS  Google Scholar 

  29. J. W. Olesik and L. C. Bates, Spectrochim. Acta, Part B, 1995, 50, 285.

    Article  Google Scholar 

  30. R. E. Sturgeon and P. Grinberg, J. Anal. At. Spectrom., 2012, 27, 222.

    Article  CAS  Google Scholar 

  31. D. Beauchemin, M. E. Bednas, S. S. Berman, J. W. McLaren, K. W. M. Siu, and R. E. Sturgeon, Anal. Chem., 1988, 60, 2209.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Suzuki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, T., Sturgeon, R.E., Zheng, C. et al. Influence of Speciation on the Response from Selenium to UV-Photochemical Vapor Generation. ANAL. SCI. 28, 807–811 (2012). https://doi.org/10.2116/analsci.28.807

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.28.807

Navigation